找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Arithmetic Geometry; Gary Cornell,Joseph H. Silverman Book 1986 Springer-Verlag New York Inc. 1986 Abelian variety.Blowing up.Compactifica

[復制鏈接]
樓主: HEIR
11#
發(fā)表于 2025-3-23 13:38:01 | 只看該作者
12#
發(fā)表于 2025-3-23 14:22:58 | 只看該作者
Overview of .NET Application Architectureof references at the end of this chapter). For the algebraic-geometric study of abelian varieties over arbitrary fields, the reader is referred to [M-AV] and to the articles of J. S. Milne in this volume.
13#
發(fā)表于 2025-3-23 21:23:35 | 只看該作者
14#
發(fā)表于 2025-3-24 02:08:05 | 只看該作者
Some Historical Notes,ly makes it much easier to state them than it was at the time when they were first used. Of course, this does not mean that we intend to critize those who invented them, which had to state them at a time when the technical means available were much weaker than those we have today.
15#
發(fā)表于 2025-3-24 05:15:42 | 只看該作者
,Abelian Varieties over ?,of references at the end of this chapter). For the algebraic-geometric study of abelian varieties over arbitrary fields, the reader is referred to [M-AV] and to the articles of J. S. Milne in this volume.
16#
發(fā)表于 2025-3-24 08:18:59 | 只看該作者
17#
發(fā)表于 2025-3-24 14:29:18 | 只看該作者
18#
發(fā)表于 2025-3-24 15:50:25 | 只看該作者
19#
發(fā)表于 2025-3-24 20:27:22 | 只看該作者
,Abelian Varieties over ?,ct. In the first section we prove some basic results on complex tori. The second section is devoted to a discussion of isogenics. The third section (the longest) describes the necessary and sufficient conditions that a complex torus must satisfy in order to be isomorphic to an abelian variety. In th
20#
發(fā)表于 2025-3-25 02:45:22 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 19:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
兴宁市| 炎陵县| 绍兴市| 泗水县| 通山县| 和平区| 清镇市| 乌兰浩特市| 庆云县| 蛟河市| 屯门区| 紫金县| 共和县| 临夏县| 武威市| 西昌市| 道孚县| 靖远县| 景谷| 宜兰县| 彭山县| 都兰县| 湛江市| 江川县| 富民县| 涟源市| 建德市| 邢台市| 景谷| 沂南县| 新乡县| 和林格尔县| 隆化县| 盐津县| 成安县| 象州县| 阳泉市| 哈尔滨市| 青铜峡市| 香港 | 宽城|