找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation of Euclidean Metric by Digital Distances; Jayanta Mukhopadhyay Book 2020 The Author(s), under exclusive license to Springer

[復(fù)制鏈接]
樓主: mountebank
11#
發(fā)表于 2025-3-23 10:39:02 | 只看該作者
cs by digital distances from the mid-sixties of the previous century. The book also contains an in-depth presentation of recent progress, and new research problems in this area.?.978-981-15-9900-2978-981-15-9901-9
12#
發(fā)表于 2025-3-23 17:27:40 | 只看該作者
13#
發(fā)表于 2025-3-23 21:00:24 | 只看該作者
14#
發(fā)表于 2025-3-23 22:52:25 | 只看該作者
15#
發(fā)表于 2025-3-24 06:04:31 | 只看該作者
16#
發(fā)表于 2025-3-24 08:53:26 | 只看該作者
Error Analysis: Analytical Approaches,The chapter discusses analytical approaches for analysis of errors of approximating Euclidean metrics by digital metrics. Toward this, various analytical error measures have been defined and their upper-bounds in integral and real spaces are discussed. It also considers the empirical analysis of approximation errors.
17#
發(fā)表于 2025-3-24 14:00:20 | 只看該作者
Conclusion,The chapter concludes the discussion of error analysis in this book by presenting a comparative study on performances of various representative distances in approximating Euclidean metrics.
18#
發(fā)表于 2025-3-24 16:49:16 | 只看該作者
19#
發(fā)表于 2025-3-24 20:42:49 | 只看該作者
P. Frick,G.-A. Harnack,A. Praderf distance functions, and many of the results derived for them are shown as special cases of the properties of the general class of distance function. It includes discussion on m-neighbor distances, t-cost distances, generalized octagonal distances, chamfering weighted distances, weighted t-cost dis
20#
發(fā)表于 2025-3-24 23:36:37 | 只看該作者
https://doi.org/10.1007/978-3-642-69841-5are discussed. It defines different types of geometric errors using those properties for evaluating the proximity of distance functions to Euclidean metrics. Finally, it presents a hybrid approach of computing analytical error from geometric measurements on hyperspheres.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 19:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武威市| 炎陵县| 锡林郭勒盟| 凤山市| 临夏县| 蓬莱市| 枣强县| 鹤山市| 洛川县| 安远县| 方城县| 博罗县| 莱西市| 如东县| 亳州市| 张家港市| 泽库县| 宣威市| 江安县| 新兴县| 芦溪县| 英吉沙县| 宜丰县| 游戏| 安陆市| 吉水县| 龙川县| 阿克| 霍邱县| 江津市| 汾西县| 澜沧| 兴文县| 日喀则市| 呼和浩特市| 泸定县| 大荔县| 九龙坡区| 洪洞县| 连南| 波密县|