找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation of Euclidean Metric by Digital Distances; Jayanta Mukhopadhyay Book 2020 The Author(s), under exclusive license to Springer

[復(fù)制鏈接]
查看: 50929|回復(fù): 36
樓主
發(fā)表于 2025-3-21 18:47:50 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Approximation of Euclidean Metric by Digital Distances
影響因子2023Jayanta Mukhopadhyay
視頻videohttp://file.papertrans.cn/161/160443/160443.mp4
發(fā)行地址Covers the topic of digital distances and their Euclidean approximation comprehensively.Includes recent results and advancement in the theory of digital distances.Summarizes properties of different cl
圖書封面Titlebook: Approximation of Euclidean Metric by Digital Distances;  Jayanta Mukhopadhyay Book 2020 The Author(s), under exclusive license to Springer
影響因子.This book discusses different types of distance functions defined in an n-D integral space for their usefulness in approximating the Euclidean metric. It discusses the properties of these distance functions and presents various kinds of error analysis in approximating Euclidean metrics. It also presents a historical perspective on efforts and motivation for approximating Euclidean metrics by digital distances from the mid-sixties of the previous century. The book also contains an in-depth presentation of recent progress, and new research problems in this area.?.
Pindex Book 2020
The information of publication is updating

書目名稱Approximation of Euclidean Metric by Digital Distances影響因子(影響力)




書目名稱Approximation of Euclidean Metric by Digital Distances影響因子(影響力)學(xué)科排名




書目名稱Approximation of Euclidean Metric by Digital Distances網(wǎng)絡(luò)公開度




書目名稱Approximation of Euclidean Metric by Digital Distances網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Approximation of Euclidean Metric by Digital Distances被引頻次




書目名稱Approximation of Euclidean Metric by Digital Distances被引頻次學(xué)科排名




書目名稱Approximation of Euclidean Metric by Digital Distances年度引用




書目名稱Approximation of Euclidean Metric by Digital Distances年度引用學(xué)科排名




書目名稱Approximation of Euclidean Metric by Digital Distances讀者反饋




書目名稱Approximation of Euclidean Metric by Digital Distances讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:03:29 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:52:58 | 只看該作者
Linear Combination of Digital Distances,derestimated and overestimated norms. In particular, it presents an analysis on approximation of Euclidean metrics by a linear combination of weighted .-cost and chamfering weighted distance functions. The same theory is applied to get new results and insights in the approximation of Euclidean metri
地板
發(fā)表于 2025-3-22 06:22:56 | 只看該作者
Book 2020. It discusses the properties of these distance functions and presents various kinds of error analysis in approximating Euclidean metrics. It also presents a historical perspective on efforts and motivation for approximating Euclidean metrics by digital distances from the mid-sixties of the previous
5#
發(fā)表于 2025-3-22 11:25:04 | 只看該作者
6#
發(fā)表于 2025-3-22 15:09:33 | 只看該作者
y of digital distances.Summarizes properties of different cl.This book discusses different types of distance functions defined in an n-D integral space for their usefulness in approximating the Euclidean metric. It discusses the properties of these distance functions and presents various kinds of er
7#
發(fā)表于 2025-3-22 20:48:17 | 只看該作者
8#
發(fā)表于 2025-3-22 22:36:39 | 只看該作者
9#
發(fā)表于 2025-3-23 01:35:25 | 只看該作者
10#
發(fā)表于 2025-3-23 05:35:55 | 只看該作者
Linear Combination of Digital Distances, .-cost and chamfering weighted distance functions. The same theory is applied to get new results and insights in the approximation of Euclidean metrics by other sub-classes such as m-neighbor, t-cost, weighted t-cost, and hyperoctagonal distances.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 22:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德州市| 金溪县| 巧家县| 东乡| 伊宁市| 仙居县| 遵义县| 四平市| 六盘水市| 突泉县| 资溪县| 瑞金市| 民勤县| 成都市| 建平县| 北碚区| 赤峰市| 榕江县| 太仆寺旗| 宣汉县| 澜沧| 溧水县| 鱼台县| 高邑县| 吴旗县| 濮阳市| 毕节市| 富顺县| 苍梧县| 商洛市| 桐柏县| 即墨市| 靖江市| 永康市| 彭泽县| 阜新市| 河北区| 彝良县| 五台县| 加查县| 饶河县|