找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation by Solutions of Partial Differential Equations; B. Fuglede,M. Goldstein,L. Rogge Book 1992 Springer Science+Business Media D

[復(fù)制鏈接]
樓主: PLY
31#
發(fā)表于 2025-3-26 22:50:04 | 只看該作者
P. Frick,G.-A. Harnack,A. PraderWe review the theory of uniform approximation of functions on closed subsets of Riemann surfaces by global holomorphic functions. We then study in detail the analogous problem of uniform approximation by global harmonic functions on Riemann surfaces or Riemannian manifolds.
32#
發(fā)表于 2025-3-27 02:14:47 | 只看該作者
P. Frick,G.-A. Harnack,H. P. WolffSome recent results on boundary behaviour of univalent harmonic mappings are presented.
33#
發(fā)表于 2025-3-27 05:55:24 | 只看該作者
https://doi.org/10.1007/978-3-642-66830-2We consider the function.The right hand term defines .(.) as an entire function. This function has been considered by many authors. We refer in particular to the monograph by Barkley Rosser [2, referred to hereafter as BR].
34#
發(fā)表于 2025-3-27 11:47:26 | 只看該作者
35#
發(fā)表于 2025-3-27 15:17:46 | 只看該作者
P. Frick,G.-A. Harnack,H. P. WolffLet . be an open subset of ?.(. ≥ 2) of finite .-dimensional Lebesgue-measure λ.(.). Assume furthermore that the point 0 of ?. belongs to .. Then a theorem of Kuran states, if.for all harmonic and integrable functions on ., then . is an . centred at 0. The main aim of this paper is to show that a similar characterization holds for the ., too.
36#
發(fā)表于 2025-3-27 18:22:17 | 只看該作者
37#
發(fā)表于 2025-3-28 01:57:04 | 只看該作者
38#
發(fā)表于 2025-3-28 05:56:22 | 只看該作者
39#
發(fā)表于 2025-3-28 06:37:27 | 只看該作者
40#
發(fā)表于 2025-3-28 12:47:11 | 只看該作者
https://doi.org/10.1007/978-3-642-78100-1This note contains some of the problems which were presented at the Problem Session during the conference at Hanstholm.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 07:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐平市| 武冈市| 齐齐哈尔市| 峨边| 东海县| 沙田区| 平顺县| 两当县| 南京市| 巩留县| 彭山县| 德清县| 汾西县| 十堰市| 扎兰屯市| 伊通| 封开县| 诏安县| 油尖旺区| 融水| 黑山县| 柯坪县| 日照市| 静海县| 宁化县| 石泉县| 永年县| 南漳县| 定日县| 阜康市| 星子县| 瑞金市| 青阳县| 廉江市| 东兴市| 西藏| 二连浩特市| 呼图壁县| 湄潭县| 浦北县| 恩平市|