找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation by Solutions of Partial Differential Equations; B. Fuglede,M. Goldstein,L. Rogge Book 1992 Springer Science+Business Media D

[復制鏈接]
樓主: PLY
21#
發(fā)表于 2025-3-25 05:47:41 | 只看該作者
H. Lindemann,F. Keller,H. G. Velcovskye operators, both localized in energy, are shown to map a weighted ..-space into a slightly larger weighted ..-space. The scattering operator, localized in energy, is shown to be bounded on all the weighted ..-spaces.
22#
發(fā)表于 2025-3-25 10:16:31 | 只看該作者
23#
發(fā)表于 2025-3-25 12:03:58 | 只看該作者
24#
發(fā)表于 2025-3-25 17:32:09 | 只看該作者
25#
發(fā)表于 2025-3-25 23:15:51 | 只看該作者
26#
發(fā)表于 2025-3-26 00:40:46 | 只看該作者
27#
發(fā)表于 2025-3-26 04:32:01 | 只看該作者
Mean Value Theorems and Best ,,-Approximation,ual) two functions .. and .. are identified if they are equal Lebesgue a.e.. Further, let . be a vector subspace of ..(.) and suppose that . ? ..(.) ., and that .* ? .. Then .* is called a ...-... if and only if‖.? .*‖. ≥ ‖. ? .‖... ? ..
28#
發(fā)表于 2025-3-26 09:00:12 | 只看該作者
Mapping Properties of the Wave Operators in Scattering Theory,e operators, both localized in energy, are shown to map a weighted ..-space into a slightly larger weighted ..-space. The scattering operator, localized in energy, is shown to be bounded on all the weighted ..-spaces.
29#
發(fā)表于 2025-3-26 15:13:11 | 只看該作者
The Role of the Hilbert Transform in 2-Dimensional Aerodynamics, known that the Hilbert transform . plays an important role in various areas of aerodynamics for thin obstacles [4], and in this note we show, as an application of ., how to define the natural steady flows outside a thin obstacle.
30#
發(fā)表于 2025-3-26 17:46:22 | 只看該作者
K. G. Blume,H. Arnold,G. W. L?hrTwo separate but related topics are discussed.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 07:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
凌源市| 邢台市| 左权县| 梁平县| 昭通市| 海安县| 海林市| 芒康县| 哈尔滨市| 深州市| 石屏县| 启东市| 新邵县| 深水埗区| 互助| 庄河市| 永昌县| 靖江市| 鹤峰县| 竹溪县| 扶风县| 谢通门县| 施秉县| 临桂县| 扶绥县| 阳江市| 崇左市| 公主岭市| 固始县| 石家庄市| 简阳市| 霞浦县| 南和县| 甘德县| 刚察县| 海盐县| 夹江县| 金山区| 蓝山县| 聂拉木县| 红安县|