找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Intelligence and Informatics; Second International Mufti Mahmud,Cosimo Ieracitano,Francesco Carlo Mor Conference proceedings 2022 T

[復(fù)制鏈接]
樓主: 搖尾乞憐
51#
發(fā)表于 2025-3-30 08:29:03 | 只看該作者
https://doi.org/10.1007/978-3-319-47892-0 that reveal an appreciable robustness and open new scenarios for different applications of the methodology developed in this work, always in the context of optimal management of industrial and commercial spaces.
52#
發(fā)表于 2025-3-30 16:03:47 | 只看該作者
https://doi.org/10.1007/978-3-319-47892-0andom Forest, XGBoost and Support Vector Machine algorithms were compared to find the best DCE-MRI instant for breast cancer classification: the pre-contrast and the third post-contrast instants resulted as the most informative items. Random Forest can be considered the optimal algorithm showing an
53#
發(fā)表于 2025-3-30 17:40:25 | 只看該作者
Rosemond Boohene,Daniel AgyapongG signal and used to build channel.frequency.time volumes. A system based on a custom deep Convolutional Neural Network (CNN), named . was designed and developed to discriminate between pre-hand-opening, pre-hand-closing and resting. The proposed system outperformed a comparable method in the litera
54#
發(fā)表于 2025-3-30 21:01:50 | 只看該作者
55#
發(fā)表于 2025-3-31 02:54:21 | 只看該作者
Shahamak Rezaei,Victoria Hill,Yipeng Liudel is proposed based on ML models. The proposed ensemble classifier achieved an accuracy of 94.92% which is approximately 5% accuracy increase compared to individual classifier approach. The source code used in this work are publicly available at:
56#
發(fā)表于 2025-3-31 08:11:22 | 只看該作者
Ali Davari,Amer Dehghan Najmabadimodel that implements a pre-trained CNN model, namely, VGG-16. This model is used to classify the segmented images into ‘Good’ and ‘Bad’. Finally, the segmented images are entered into a pre-trained ResNet34 model that identifies the Crown and Rump regions. This can be used by obstetric practitioner
57#
發(fā)表于 2025-3-31 09:32:15 | 只看該作者
58#
發(fā)表于 2025-3-31 17:10:15 | 只看該作者
59#
發(fā)表于 2025-3-31 21:16:49 | 只看該作者
ConDet2: An Improved Conjunctivitis Detection Portable Healthcare App Powered by Artificial Intelligctivitis. In this work, we present with .ConDet2 which provides an advanced solution than the earlier version of it. It is faster with a higher accuracy level (95%) than the previously released .ConDet.
60#
發(fā)表于 2025-4-1 00:59:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武宁县| 三台县| 南郑县| 独山县| 宝鸡市| 吴桥县| 宝山区| 新和县| 定南县| 浙江省| 东方市| 惠州市| 周口市| 英山县| 太仓市| 万年县| 清涧县| 澄迈县| 全南县| 灵寿县| 洛扎县| 胶州市| 凯里市| 竹溪县| 白银市| 天等县| 昆山市| 尖扎县| 凌海市| 石屏县| 定州市| 罗平县| 忻州市| 东辽县| 湖南省| 溆浦县| 石渠县| 鸡泽县| 虹口区| 青阳县| 许昌县|