找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Intelligence and Informatics; Second International Mufti Mahmud,Cosimo Ieracitano,Francesco Carlo Mor Conference proceedings 2022 T

[復(fù)制鏈接]
樓主: 搖尾乞憐
31#
發(fā)表于 2025-3-26 23:25:27 | 只看該作者
32#
發(fā)表于 2025-3-27 03:22:11 | 只看該作者
Nezameddin Faghih,Mohammad Reza Zaliictive models will help to indicate the seriousness of the patients and assist the doctors in taking immediate actions. The Medical Information Mart for Intensive Care III (MIMIC-III) dataset is used in this research. The medicines medicated in critical newborn children were detected, and how the dr
33#
發(fā)表于 2025-3-27 09:15:08 | 只看該作者
34#
發(fā)表于 2025-3-27 11:33:26 | 只看該作者
Shahamak Rezaei,Victoria Hill,Yipeng Liuto its ability to rapid learning of end-to-end models accurately using compound data. Recent years have seen an extensive application of Deep Learning (DL) models in solving the 4-way classification of Alzheimer’s Disease (AD) and achieved good results too. However, traditional machine learning clas
35#
發(fā)表于 2025-3-27 13:46:30 | 只看該作者
Ali Davari,Amer Dehghan Najmabadiasurement of the Crown to Rump Length (CRL), it is a crucial scan as it informs obstetric practitioners of the optimal timing for any necessary interventions at the earliest point. Inter-observer variation creates problems for Obstetric Practitioners as any variation in the measurement of the CRL ca
36#
發(fā)表于 2025-3-27 21:42:16 | 只看該作者
Applied Intelligence and Informatics978-3-031-24801-6Series ISSN 1865-0929 Series E-ISSN 1865-0937
37#
發(fā)表于 2025-3-27 22:15:07 | 只看該作者
38#
發(fā)表于 2025-3-28 04:05:48 | 只看該作者
MEMS and AI for the Recognition of Human Activities on IoT Platformses or nursing homes. Finally, to determine the position of subjects, we associate the prototype with a positioning system on the ultrasonic platform. Finally, applying the Edge Machine Learning technique, we developed an application on the STM32L475VG microprocessor on which motion acquisition and a
39#
發(fā)表于 2025-3-28 08:30:35 | 只看該作者
Tackling the?Linear Sum Assignment Problem with?Graph Neural Networksfor a significant increase in classification accuracy if compared with two different DNN approaches based on Dense Networks and Convolutional Neural Networks, furthermore, the GNN has proved to be very efficient with regard to the processing time and memory requirements, thanks to intrinsic paramete
40#
發(fā)表于 2025-3-28 13:04:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建水县| 山东省| 澜沧| 延长县| 镇坪县| 天峨县| 清流县| 庆阳市| 徐州市| 彰化市| 龙泉市| 华池县| 镇坪县| 皮山县| 大同县| 方正县| 仲巴县| 通化县| 平原县| 郑州市| 当涂县| 滁州市| 宣汉县| 昭平县| 枝江市| 安丘市| 金坛市| 米林县| 亳州市| 固镇县| 酉阳| 遵义县| 凭祥市| 嫩江县| 山东| 大冶市| 昌图县| 巫溪县| 泰宁县| 重庆市| 罗山县|