找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Functional Analysis ; Ammar Khanfer Textbook 2024 The Editor(s) (if applicable) and The Author(s), under exclusive license to Spri

[復(fù)制鏈接]
查看: 33844|回復(fù): 38
樓主
發(fā)表于 2025-3-21 17:55:23 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Applied Functional Analysis
影響因子2023Ammar Khanfer
視頻videohttp://file.papertrans.cn/160/159818/159818.mp4
發(fā)行地址Combines the standard material studied in graduate courses in mathematics.Provides a very detailed and thorough exposition of topics in functional analysis and applications.Supplements with 300 solved
圖書封面Titlebook: Applied Functional Analysis ;  Ammar Khanfer Textbook 2024 The Editor(s) (if applicable) and The Author(s), under exclusive license to Spri
影響因子.This textbook offers a concise and thorough introduction to the topic of applied functional analysis. Targeted to graduate students of mathematics, it presents standard topics in a self-contained and accessible manner.?Featuring approximately 300 problems sets to?aid in understanding the content, this text serves as an ideal resource for independent study or as a textbook for classroom use. With its comprehensive coverage and reader-friendly approach, it is equally beneficial for both students and teachers seeking a detailed and in-depth understanding of the subject matter..
Pindex Textbook 2024
The information of publication is updating

書目名稱Applied Functional Analysis 影響因子(影響力)




書目名稱Applied Functional Analysis 影響因子(影響力)學(xué)科排名




書目名稱Applied Functional Analysis 網(wǎng)絡(luò)公開度




書目名稱Applied Functional Analysis 網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Applied Functional Analysis 被引頻次




書目名稱Applied Functional Analysis 被引頻次學(xué)科排名




書目名稱Applied Functional Analysis 年度引用




書目名稱Applied Functional Analysis 年度引用學(xué)科排名




書目名稱Applied Functional Analysis 讀者反饋




書目名稱Applied Functional Analysis 讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:02:54 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:02:50 | 只看該作者
,Calculus of?Variations,inding ways to deal with it is as old as humanity itself. In case we are looking for a minimum value, the problem is called: . .. We will focus on the minimization problems due to their particular importance: In physics and engineering, we look for the minimum energy, in geometry, we look for the sh
地板
發(fā)表于 2025-3-22 06:37:53 | 只看該作者
Rob Bemthuis,Sanja Lazarova-Molnarst some of the most important notions and results that will be used throughout this book. It should be noted that the objective of this section is to merely refresh the memory rather than explain these concepts as they have been already explained in detail in volume 2 of this series [58]. The reader
5#
發(fā)表于 2025-3-22 11:15:03 | 只看該作者
https://doi.org/10.1007/978-3-031-46587-1ed to validate the construction of delta. This is one of the main motivations to develop the theory of distribution, and the purpose of this chapter is to introduce the theory to the reader and discuss its most important basics. As explained earlier, the Dirac delta cannot be considered as a functio
6#
發(fā)表于 2025-3-22 16:19:41 | 只看該作者
7#
發(fā)表于 2025-3-22 17:50:39 | 只看該作者
Rob Bemthuis,Sanja Lazarova-MolnarUnder this type of derivative, distributions have derivatives of all orders. Another generalization of differentiation is proposed for locally integrable functions that are not necessarily differentiable in the usual sense.
8#
發(fā)表于 2025-3-22 22:51:34 | 只看該作者
https://doi.org/10.1007/978-3-031-46587-1The general form of a second-order partial differential equation in . takes the form
9#
發(fā)表于 2025-3-23 01:50:21 | 只看該作者
10#
發(fā)表于 2025-3-23 09:06:16 | 只看該作者
Elliptic Theory,The general form of a second-order partial differential equation in . takes the form
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沿河| 海林市| 吴川市| 石屏县| 凤翔县| 华池县| 漾濞| 霍城县| 唐海县| 十堰市| 调兵山市| 达州市| 万载县| 宽甸| 沙雅县| 江川县| 饶平县| 东山县| 吉木萨尔县| 大足县| 乐清市| 巴青县| 仪征市| 阿图什市| 镇雄县| 肃宁县| 云梦县| 南华县| 沧源| 长泰县| 安阳县| 德保县| 漳平市| 肥城市| 墨脱县| 都匀市| 宜宾县| 贺州市| 洪江市| 平果县| 德江县|