找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Functional Analysis ; Ammar Khanfer Textbook 2024 The Editor(s) (if applicable) and The Author(s), under exclusive license to Spri

[復(fù)制鏈接]
查看: 33841|回復(fù): 38
樓主
發(fā)表于 2025-3-21 17:55:23 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱(chēng)Applied Functional Analysis
影響因子2023Ammar Khanfer
視頻videohttp://file.papertrans.cn/160/159818/159818.mp4
發(fā)行地址Combines the standard material studied in graduate courses in mathematics.Provides a very detailed and thorough exposition of topics in functional analysis and applications.Supplements with 300 solved
圖書(shū)封面Titlebook: Applied Functional Analysis ;  Ammar Khanfer Textbook 2024 The Editor(s) (if applicable) and The Author(s), under exclusive license to Spri
影響因子.This textbook offers a concise and thorough introduction to the topic of applied functional analysis. Targeted to graduate students of mathematics, it presents standard topics in a self-contained and accessible manner.?Featuring approximately 300 problems sets to?aid in understanding the content, this text serves as an ideal resource for independent study or as a textbook for classroom use. With its comprehensive coverage and reader-friendly approach, it is equally beneficial for both students and teachers seeking a detailed and in-depth understanding of the subject matter..
Pindex Textbook 2024
The information of publication is updating

書(shū)目名稱(chēng)Applied Functional Analysis 影響因子(影響力)




書(shū)目名稱(chēng)Applied Functional Analysis 影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Applied Functional Analysis 網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Applied Functional Analysis 網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Applied Functional Analysis 被引頻次




書(shū)目名稱(chēng)Applied Functional Analysis 被引頻次學(xué)科排名




書(shū)目名稱(chēng)Applied Functional Analysis 年度引用




書(shū)目名稱(chēng)Applied Functional Analysis 年度引用學(xué)科排名




書(shū)目名稱(chēng)Applied Functional Analysis 讀者反饋




書(shū)目名稱(chēng)Applied Functional Analysis 讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:02:54 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:02:50 | 只看該作者
,Calculus of?Variations,inding ways to deal with it is as old as humanity itself. In case we are looking for a minimum value, the problem is called: . .. We will focus on the minimization problems due to their particular importance: In physics and engineering, we look for the minimum energy, in geometry, we look for the sh
地板
發(fā)表于 2025-3-22 06:37:53 | 只看該作者
Rob Bemthuis,Sanja Lazarova-Molnarst some of the most important notions and results that will be used throughout this book. It should be noted that the objective of this section is to merely refresh the memory rather than explain these concepts as they have been already explained in detail in volume 2 of this series [58]. The reader
5#
發(fā)表于 2025-3-22 11:15:03 | 只看該作者
https://doi.org/10.1007/978-3-031-46587-1ed to validate the construction of delta. This is one of the main motivations to develop the theory of distribution, and the purpose of this chapter is to introduce the theory to the reader and discuss its most important basics. As explained earlier, the Dirac delta cannot be considered as a functio
6#
發(fā)表于 2025-3-22 16:19:41 | 只看該作者
7#
發(fā)表于 2025-3-22 17:50:39 | 只看該作者
Rob Bemthuis,Sanja Lazarova-MolnarUnder this type of derivative, distributions have derivatives of all orders. Another generalization of differentiation is proposed for locally integrable functions that are not necessarily differentiable in the usual sense.
8#
發(fā)表于 2025-3-22 22:51:34 | 只看該作者
https://doi.org/10.1007/978-3-031-46587-1The general form of a second-order partial differential equation in . takes the form
9#
發(fā)表于 2025-3-23 01:50:21 | 只看該作者
10#
發(fā)表于 2025-3-23 09:06:16 | 只看該作者
Elliptic Theory,The general form of a second-order partial differential equation in . takes the form
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青龙| 改则县| 休宁县| 武强县| 崇阳县| 富宁县| 康平县| 罗山县| 建瓯市| 龙海市| 湖口县| 望江县| 阿荣旗| 清水河县| 湾仔区| 朝阳市| 谢通门县| 景宁| 广东省| 南投市| 宁乡县| 安国市| 南充市| 辛集市| 凤凰县| 望都县| 嵊泗县| 白玉县| 泰兴市| 贵港市| 宜兰县| 锡林郭勒盟| 肥东县| 永兴县| 班玛县| 灵武市| 凤翔县| 吉木乃县| 曲阳县| 普兰县| 望谟县|