找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Application of AI in Credit Scoring Modeling; Bohdan Popovych Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive l

[復(fù)制鏈接]
查看: 7287|回復(fù): 37
樓主
發(fā)表于 2025-3-21 17:35:39 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Application of AI in Credit Scoring Modeling
影響因子2023Bohdan Popovych
視頻videohttp://file.papertrans.cn/160/159087/159087.mp4
學(xué)科分類BestMasters
圖書封面Titlebook: Application of AI in Credit Scoring Modeling;  Bohdan Popovych Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive l
影響因子The scope of this study is to investigate the capability of AI methods to accurately detect and predict credit risks based on retail borrowers‘ features. The comparison of logistic regression, decision tree, and random forest showed that machine learning methods are able to predict credit defaults of individuals more accurately than the logit model. Furthermore, it was demonstrated how random forest and decision tree models were more sensitive in detecting default borrowers.
Pindex Book 2022
The information of publication is updating

書目名稱Application of AI in Credit Scoring Modeling影響因子(影響力)




書目名稱Application of AI in Credit Scoring Modeling影響因子(影響力)學(xué)科排名




書目名稱Application of AI in Credit Scoring Modeling網(wǎng)絡(luò)公開度




書目名稱Application of AI in Credit Scoring Modeling網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Application of AI in Credit Scoring Modeling被引頻次




書目名稱Application of AI in Credit Scoring Modeling被引頻次學(xué)科排名




書目名稱Application of AI in Credit Scoring Modeling年度引用




書目名稱Application of AI in Credit Scoring Modeling年度引用學(xué)科排名




書目名稱Application of AI in Credit Scoring Modeling讀者反饋




書目名稱Application of AI in Credit Scoring Modeling讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:02:08 | 只看該作者
2625-3577 defaults of individuals more accurately than the logit model. Furthermore, it was demonstrated how random forest and decision tree models were more sensitive in detecting default borrowers.978-3-658-40179-5978-3-658-40180-1Series ISSN 2625-3577 Series E-ISSN 2625-3615
板凳
發(fā)表于 2025-3-22 03:05:00 | 只看該作者
Book 2022es. The comparison of logistic regression, decision tree, and random forest showed that machine learning methods are able to predict credit defaults of individuals more accurately than the logit model. Furthermore, it was demonstrated how random forest and decision tree models were more sensitive in
地板
發(fā)表于 2025-3-22 08:00:48 | 只看該作者
5#
發(fā)表于 2025-3-22 09:15:46 | 只看該作者
Credit Scoring Methodologies,search overview, the logistic regression method is considered to be the standard of traditional credit scoring. On another hand, banks and financial companies develop expert systems for credit risk assessment. Expert systems do not use statistical models and are, mainly, based on a set of underwriting rules and procedures.
6#
發(fā)表于 2025-3-22 15:50:13 | 只看該作者
Undergraduate Topics in Computer Sciencedevelopment of credit risk management can improve the competitiveness of European banks and financial institutions. The necessity of more accurate credit risk modeling motivates researchers to discover new methods in credit assessment.
7#
發(fā)表于 2025-3-22 19:16:04 | 只看該作者
8#
發(fā)表于 2025-3-22 23:58:28 | 只看該作者
Building an Embedded System (First Pass),ch, where a linear combination of independent features is used for the representation of a dependent variable. In credit scoring, independent parameters are risk factors, and a dependent variable is PD or creditworthiness level. Discriminant analysis is the first linear approach that was applied for
9#
發(fā)表于 2025-3-23 05:13:19 | 只看該作者
10#
發(fā)表于 2025-3-23 05:45:04 | 只看該作者
Application of AI in Credit Scoring Modeling978-3-658-40180-1Series ISSN 2625-3577 Series E-ISSN 2625-3615
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 00:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台南县| 武平县| 常德市| 莱阳市| 贡嘎县| 汝州市| 弋阳县| 根河市| 侯马市| 兴国县| 逊克县| 陆良县| 阳泉市| 东安县| 台北市| 郓城县| 武胜县| 观塘区| 抚远县| 莱芜市| 昂仁县| 本溪| 靖安县| 平度市| 凤凰县| 盐源县| 乐东| 德化县| 崇左市| 高平市| 盘锦市| 绥宁县| 红安县| 革吉县| 马公市| 河池市| 达尔| 福贡县| 邮箱| 淮安市| 阿图什市|