找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Application of AI in Credit Scoring Modeling; Bohdan Popovych Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive l

[復(fù)制鏈接]
查看: 7292|回復(fù): 37
樓主
發(fā)表于 2025-3-21 17:35:39 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱(chēng)Application of AI in Credit Scoring Modeling
影響因子2023Bohdan Popovych
視頻videohttp://file.papertrans.cn/160/159087/159087.mp4
學(xué)科分類(lèi)BestMasters
圖書(shū)封面Titlebook: Application of AI in Credit Scoring Modeling;  Bohdan Popovych Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive l
影響因子The scope of this study is to investigate the capability of AI methods to accurately detect and predict credit risks based on retail borrowers‘ features. The comparison of logistic regression, decision tree, and random forest showed that machine learning methods are able to predict credit defaults of individuals more accurately than the logit model. Furthermore, it was demonstrated how random forest and decision tree models were more sensitive in detecting default borrowers.
Pindex Book 2022
The information of publication is updating

書(shū)目名稱(chēng)Application of AI in Credit Scoring Modeling影響因子(影響力)




書(shū)目名稱(chēng)Application of AI in Credit Scoring Modeling影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Application of AI in Credit Scoring Modeling網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Application of AI in Credit Scoring Modeling網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Application of AI in Credit Scoring Modeling被引頻次




書(shū)目名稱(chēng)Application of AI in Credit Scoring Modeling被引頻次學(xué)科排名




書(shū)目名稱(chēng)Application of AI in Credit Scoring Modeling年度引用




書(shū)目名稱(chēng)Application of AI in Credit Scoring Modeling年度引用學(xué)科排名




書(shū)目名稱(chēng)Application of AI in Credit Scoring Modeling讀者反饋




書(shū)目名稱(chēng)Application of AI in Credit Scoring Modeling讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:02:08 | 只看該作者
2625-3577 defaults of individuals more accurately than the logit model. Furthermore, it was demonstrated how random forest and decision tree models were more sensitive in detecting default borrowers.978-3-658-40179-5978-3-658-40180-1Series ISSN 2625-3577 Series E-ISSN 2625-3615
板凳
發(fā)表于 2025-3-22 03:05:00 | 只看該作者
Book 2022es. The comparison of logistic regression, decision tree, and random forest showed that machine learning methods are able to predict credit defaults of individuals more accurately than the logit model. Furthermore, it was demonstrated how random forest and decision tree models were more sensitive in
地板
發(fā)表于 2025-3-22 08:00:48 | 只看該作者
5#
發(fā)表于 2025-3-22 09:15:46 | 只看該作者
Credit Scoring Methodologies,search overview, the logistic regression method is considered to be the standard of traditional credit scoring. On another hand, banks and financial companies develop expert systems for credit risk assessment. Expert systems do not use statistical models and are, mainly, based on a set of underwriting rules and procedures.
6#
發(fā)表于 2025-3-22 15:50:13 | 只看該作者
Undergraduate Topics in Computer Sciencedevelopment of credit risk management can improve the competitiveness of European banks and financial institutions. The necessity of more accurate credit risk modeling motivates researchers to discover new methods in credit assessment.
7#
發(fā)表于 2025-3-22 19:16:04 | 只看該作者
8#
發(fā)表于 2025-3-22 23:58:28 | 只看該作者
Building an Embedded System (First Pass),ch, where a linear combination of independent features is used for the representation of a dependent variable. In credit scoring, independent parameters are risk factors, and a dependent variable is PD or creditworthiness level. Discriminant analysis is the first linear approach that was applied for
9#
發(fā)表于 2025-3-23 05:13:19 | 只看該作者
10#
發(fā)表于 2025-3-23 05:45:04 | 只看該作者
Application of AI in Credit Scoring Modeling978-3-658-40180-1Series ISSN 2625-3577 Series E-ISSN 2625-3615
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 00:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黎平县| 策勒县| 鸡东县| 保定市| 宁陕县| 新龙县| 池州市| 南木林县| 泰顺县| 泗水县| 大丰市| 广水市| 蓝山县| 金塔县| 应用必备| 久治县| 温泉县| 西平县| 利辛县| 镇宁| 亚东县| 渝中区| 邵东县| 枣强县| 汉阴县| 杭锦旗| 小金县| 福州市| 西乡县| 奉化市| 新丰县| 哈巴河县| 湄潭县| 宁安市| 敦化市| 湖南省| 拉萨市| 西宁市| 靖州| 和平区| 交口县|