找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic and Algebraic Geometry; Anilatmaja Aryasomayajula,Indranil Biswas,A. J. Pa Book 2017 Springer Nature Singapore Pte Ltd. and Hindu

[復制鏈接]
樓主: FROM
31#
發(fā)表于 2025-3-26 23:20:11 | 只看該作者
32#
發(fā)表于 2025-3-27 05:09:19 | 只看該作者
Discrete Optimization with Interval Dataontaining the fpqc torsors, whose objects are torsors for a new topology. We prove that this new category is cofiltered thus generating a fundamental group scheme over ., said . as it may not be flat in general. We prove that it is flat when . is a Dedekind scheme, thus coinciding with the . one.
33#
發(fā)表于 2025-3-27 06:42:47 | 只看該作者
Minmax Regret Minimum Assignmention conjectures, Theta functions, Picard bundles. They also play an important role in Brill-Noether theory for higher ranks and coherent systems. Eighteen years back, D.C. Butler made a conjecture about the semistability of . for general (. ) [15]. The conjecture was proved recently by Peter Newstead, myself and Leticia Brambila-Paz [8].
34#
發(fā)表于 2025-3-27 09:44:43 | 只看該作者
35#
發(fā)表于 2025-3-27 15:31:45 | 只看該作者
36#
發(fā)表于 2025-3-27 20:38:51 | 只看該作者
Continuous Representations of Real Objects,general as possible in the algebraic geometric framework and to present a few applications. We will focus in particular to the application to the problem of specialization of covers addressed by P. Dèbes et al. in a series of papers.
37#
發(fā)表于 2025-3-28 01:16:38 | 只看該作者
38#
發(fā)表于 2025-3-28 02:12:54 | 只看該作者
39#
發(fā)表于 2025-3-28 10:16:06 | 只看該作者
40#
發(fā)表于 2025-3-28 13:12:42 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 13:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
新泰市| 晋城| 鸡泽县| 荔浦县| 临颍县| 扶沟县| 桓台县| 都昌县| 枞阳县| 沙河市| 金溪县| 临西县| 康定县| 铜山县| 文化| 武冈市| 巴林右旗| 巴马| 武穴市| 蓬莱市| 宾川县| 山东省| 游戏| 柯坪县| 灵宝市| 蒙山县| 祁连县| 郎溪县| 桑日县| 竹溪县| 共和县| 巨鹿县| 塘沽区| 来安县| 河曲县| 招远市| 望都县| 诸暨市| 洪泽县| 盐亭县| 佛冈县|