找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic and Algebraic Geometry; Anilatmaja Aryasomayajula,Indranil Biswas,A. J. Pa Book 2017 Springer Nature Singapore Pte Ltd. and Hindu

[復(fù)制鏈接]
查看: 25672|回復(fù): 51
樓主
發(fā)表于 2025-3-21 19:03:13 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Analytic and Algebraic Geometry
影響因子2023Anilatmaja Aryasomayajula,Indranil Biswas,A. J. Pa
視頻videohttp://file.papertrans.cn/157/156558/156558.mp4
發(fā)行地址Introduces recent and advanced techniques in the area of analytic and algebraic geometry.Includes research articles to demonstrate the usage of these techniques to prove new results.Supports further r
圖書封面Titlebook: Analytic and Algebraic Geometry;  Anilatmaja Aryasomayajula,Indranil Biswas,A. J. Pa Book 2017 Springer Nature Singapore Pte Ltd. and Hindu
影響因子.This volume is an outcome of the International conference held in Tata Institute of Fundamental?Research and the University of Hyderabad. There are fifteen articles in this volume. The main purpose of the articles is to introduce recent and advanced techniques in the area of analytic and algebraic geometry. This volume attempts to give recent developments in the area to target mainly young researchers who are new to this area. Also, some research articles have been added to give examples of how to use these techniques to prove new results..
Pindex Book 2017
The information of publication is updating

書目名稱Analytic and Algebraic Geometry影響因子(影響力)




書目名稱Analytic and Algebraic Geometry影響因子(影響力)學(xué)科排名




書目名稱Analytic and Algebraic Geometry網(wǎng)絡(luò)公開度




書目名稱Analytic and Algebraic Geometry網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Analytic and Algebraic Geometry被引頻次




書目名稱Analytic and Algebraic Geometry被引頻次學(xué)科排名




書目名稱Analytic and Algebraic Geometry年度引用




書目名稱Analytic and Algebraic Geometry年度引用學(xué)科排名




書目名稱Analytic and Algebraic Geometry讀者反饋




書目名稱Analytic and Algebraic Geometry讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:51:29 | 只看該作者
http://image.papertrans.cn/a/image/156558.jpg
板凳
發(fā)表于 2025-3-22 01:07:10 | 只看該作者
地板
發(fā)表于 2025-3-22 06:44:12 | 只看該作者
5#
發(fā)表于 2025-3-22 09:53:14 | 只看該作者
6#
發(fā)表于 2025-3-22 16:01:25 | 只看該作者
Minmax Regret Minimum Spanning Treelying techniques coming from analytic geometry is based on the micro-local analysis of the heat kernel and the Bergman kernel from [3] and [2], respectively, using which we derive sup-norm bounds for cusp forms of integral weight, half-integral weight, and real weight associated to a Fuchsian subgro
7#
發(fā)表于 2025-3-22 21:02:00 | 只看該作者
8#
發(fā)表于 2025-3-22 22:32:55 | 只看該作者
https://doi.org/10.1007/978-3-319-43476-6dles, their elementary properties, and we give an exposition of the known results in their classification on various kinds of smooth projective varieties. As an illustration of a method recently used by Marta Casanellas and Robin Hartshorne for the classification of Ulrich bundles on a cubic surface
9#
發(fā)表于 2025-3-23 05:11:07 | 只看該作者
https://doi.org/10.1007/978-1-4612-0801-3he condition: .(.?) ∩ .(.?) . ?. An irreducible component of the Noether-Lefschetz locus is locally a Hodge locus. One question is to ask under what choice of a Hodge class γ.(.?) ∩ .(. ?) does the variational Hodge conjecture hold true? In this article we use methods coming from commutative algebra
10#
發(fā)表于 2025-3-23 06:32:45 | 只看該作者
Continuous Representations of Real Objects, the description of the “opération de torsion” in a particular context. The aim of this note is to give a formalization of this twisting operation as general as possible in the algebraic geometric framework and to present a few applications. We will focus in particular to the application to the prob
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 16:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石楼县| 桐梓县| 凤凰县| 枝江市| 县级市| 东光县| 济阳县| 绥江县| 涡阳县| 富民县| 祁门县| 盐津县| 潢川县| 闽侯县| 三台县| 东阳市| 武汉市| 绥德县| 伊金霍洛旗| 攀枝花市| 黔西| 南澳县| 南雄市| 龙门县| 安龙县| 乌拉特后旗| 东莞市| 香格里拉县| 双鸭山市| 贡山| 颍上县| 上饶市| 县级市| 会昌县| 迁安市| 曲麻莱县| 临澧县| 孟村| 嘉义县| 天镇县| 闽清县|