找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic Number Theory and Diophantine Problems; Proceedings of a Con A. C. Adolphson,J. B. Conrey,R. I. Yager Conference proceedings 1987

[復(fù)制鏈接]
樓主: TEMPO
51#
發(fā)表于 2025-3-30 08:42:19 | 只看該作者
52#
發(fā)表于 2025-3-30 14:26:40 | 只看該作者
,The Distribution of Ω(n) among Numbers with No Large Prime Factors, far from k., and for large x, y with . the number of solutions n of Ω(n) = k in S(x,y) is roughly exp(-V(k-k.).) times the number of solutions n of Ω(n) = k. in S(x,y)..In the course of the proof, machinery is developed which permits a sharpening in the same range of previous estimates for the local behaviour of ψ(x,y) as a function of x.
53#
發(fā)表于 2025-3-30 19:13:27 | 只看該作者
54#
發(fā)表于 2025-3-30 21:40:19 | 只看該作者
55#
發(fā)表于 2025-3-31 03:33:41 | 只看該作者
Jake T. Lussier,Nitesh V. Chawlagebraic numbers in order to show that algebraic numbers cannot be approximated too well by rational numbers. In particular we will give special attention to the problem of obtaining effective measures of irrationality, or types, for various classes of algebraic numbers.
56#
發(fā)表于 2025-3-31 07:43:22 | 只看該作者
57#
發(fā)表于 2025-3-31 10:34:25 | 只看該作者
https://doi.org/10.1007/978-3-030-88942-5ive topics. These topics are connected by a thread which we shall follow in the reverse order so that in fact the work in each section was to a greater or lesser extent motivated by the work in the subsequent sections.
58#
發(fā)表于 2025-3-31 13:56:42 | 只看該作者
Kazuki Kawamura,Akihiro Yamamotoarmonic analysis on GL(2,.) with the techniques of analytic number theory, a method inspired by A. Selberg [17]. A lot of impetus has been gained by the trace formula of Kuznetsov [11], [12], which relates Kloosterman sums with eigenfunctions of the Laplacian on GL(2,.) modulo a discrete subgroup. We cite some of the most striking applications.
59#
發(fā)表于 2025-3-31 21:25:16 | 只看該作者
Summary, Applications, Future Development,n Mangoldt function. Although we are unable to establish the naturally conjectured results for this sum, we shall show how the introduction of averaging — in a form likely to occur in applications — can lead to substantial improvements.
60#
發(fā)表于 2025-4-1 00:43:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临武县| 延边| 大同市| 黄石市| 陕西省| 阜平县| 衡东县| 广州市| 茶陵县| 微山县| 安达市| 阳东县| 黔西| 宁夏| 扬州市| 乐平市| 乌拉特后旗| 祁阳县| 达拉特旗| 正宁县| 游戏| 榆中县| 尚志市| 新营市| 始兴县| 塘沽区| 浏阳市| 湘乡市| 乐业县| 宁波市| 炉霍县| 曲周县| 宜州市| 阜南县| 定结县| 五莲县| 光山县| 姚安县| 东城区| 淮滨县| 文昌市|