找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic Number Theory and Diophantine Problems; Proceedings of a Con A. C. Adolphson,J. B. Conrey,R. I. Yager Conference proceedings 1987

[復制鏈接]
樓主: TEMPO
21#
發(fā)表于 2025-3-25 05:04:26 | 只看該作者
22#
發(fā)表于 2025-3-25 09:50:22 | 只看該作者
Introduction and Theoretical Motivation,In 1943, A. Selberg [15] Deduced From The Riemann Hypothesis (Rh) that . for X. ≤ δ ≤ X., X ≥ 2. Selberg was concerned with small values of δ and the constraint δ ≤ X. was imposed more for convenience than out of necessity. For Larger δ we have the following result.
23#
發(fā)表于 2025-3-25 13:14:12 | 只看該作者
https://doi.org/10.1007/978-3-642-33938-7In his famous Habilitationsschrift of 1854 on trigonometric series and integration theory, Riemann gave the following interesting example which shows his high ingenuity of analysis and arithmetic as well.
24#
發(fā)表于 2025-3-25 17:15:08 | 只看該作者
25#
發(fā)表于 2025-3-25 23:40:41 | 只看該作者
https://doi.org/10.1007/978-3-031-03910-2Let m ≥ 1. The k-th polygonal number of order m+2 is the sum of the first k terms of the arithmetic progression 1, 1+m, l+2m, l+3m,… The polygonal numbers of orders 3 and 4 are the triangular numbers and squares, respectively.
26#
發(fā)表于 2025-3-26 02:35:19 | 只看該作者
27#
發(fā)表于 2025-3-26 04:51:58 | 只看該作者
Technologien für die intelligente AutomationTwo basic questions concerning the Ramanujan τ-function concern the size and variation of these numbers:
28#
發(fā)表于 2025-3-26 10:33:14 | 只看該作者
29#
發(fā)表于 2025-3-26 13:28:34 | 只看該作者
Simple Zeros of the Zeta-Function of a Quadratic Number Field, II,Let K be a fixed quadratic extension of . and write ζ.(s) for the Dedekind zeta-function of K, where s = σ + it. It is wellknown, and easy to prove, that the number N.(T) of zeros of ζ.(s) in the region 0 < σ < 1, 0 < t ≤ T satisfies . as T → ∞. On the other hand, not much is known about the number of . that are simple.
30#
發(fā)表于 2025-3-26 20:26:53 | 只看該作者
Pair Correlation of Zeros and Primes in Short Intervals,In 1943, A. Selberg [15] Deduced From The Riemann Hypothesis (Rh) that . for X. ≤ δ ≤ X., X ≥ 2. Selberg was concerned with small values of δ and the constraint δ ≤ X. was imposed more for convenience than out of necessity. For Larger δ we have the following result.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
垫江县| 名山县| 金昌市| 禹州市| 富民县| 礼泉县| 重庆市| 辽阳市| 平昌县| 鞍山市| 惠东县| 南华县| 丹东市| 讷河市| 建阳市| 乌兰浩特市| 东丰县| 西平县| 阳新县| 景泰县| 麟游县| 河北省| 诸暨市| 广丰县| 绿春县| 二连浩特市| 清水河县| 灵宝市| 瑞丽市| 墨玉县| 呼伦贝尔市| 阳信县| 平安县| 子洲县| 朔州市| 绥宁县| 兴宁市| 明溪县| 义乌市| 昌都县| 会理县|