找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic D-Modules and Applications; Jan-Erik Bj?rk Book 1993 Springer Science+Business Media Dordrecht 1993 Hypergeometric function.calcu

[復(fù)制鏈接]
樓主: infection
31#
發(fā)表于 2025-3-27 00:10:15 | 只看該作者
Regular holonomic ,-modules,ular holonomic if its formal solution complex is equal to its analytic solution complex at every point, i.e. if . for every .. ∈ Supp(.). The class of regular holonomic complexes is denoted by D.. (..). A holonomic module is regular holonomic if its single degree complex is regular holonomic. The cl
32#
發(fā)表于 2025-3-27 02:07:54 | 只看該作者
33#
發(fā)表于 2025-3-27 07:55:19 | 只看該作者
Distributions and regular holonomic systems,tion 2 as a preparation to section 3. There we prove that every regular holonomic ..-module on a complex manifold is locally a cyclic module generated by a distribution on the underlying real manifold. The main result is Theorem 7.3.5 which gives an exact functor from RH(..) into the category of reg
34#
發(fā)表于 2025-3-27 09:30:23 | 只看該作者
Microdifferential operators,n of .. is presented in the first section. The sheaf of rings .. is coherent and the stalks are regular Auslander rings with global homological dimension equal to ... Let .: .*(.) →. be the projection. Then .... is a subring of ... If . ∈ coh(..) there exists the ....A basic result is the equality S
35#
發(fā)表于 2025-3-27 14:00:24 | 只看該作者
36#
發(fā)表于 2025-3-27 18:31:44 | 只看該作者
37#
發(fā)表于 2025-3-28 00:53:41 | 只看該作者
38#
發(fā)表于 2025-3-28 06:02:05 | 只看該作者
39#
發(fā)表于 2025-3-28 09:58:19 | 只看該作者
40#
發(fā)表于 2025-3-28 11:14:10 | 只看該作者
ges) applicable to them. The closure property is shown to be preserved in a natural way by the results of operations possessing the same characteristics as the operands in a query. It is shown that every class possesses the properties of an operand by defining a set of objects and deriving a set of
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 00:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
达孜县| 巨野县| 兴业县| 遂昌县| 页游| 甘南县| 井陉县| 蒲城县| 沙坪坝区| 庆安县| 宜君县| 兴安县| 行唐县| 鄂州市| 望都县| 恩平市| 涟水县| 高碑店市| 恭城| 太仆寺旗| 永靖县| 仙游县| 古交市| 柯坪县| 北碚区| 阜宁县| 华宁县| 钟山县| 台南市| 莱西市| 古交市| 泽州县| 东港市| 宁乡县| 武安市| 上林县| 永德县| 鄂托克前旗| 康平县| 历史| 海盐县|