找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic D-Modules and Applications; Jan-Erik Bj?rk Book 1993 Springer Science+Business Media Dordrecht 1993 Hypergeometric function.calcu

[復(fù)制鏈接]
查看: 13924|回復(fù): 43
樓主
發(fā)表于 2025-3-21 16:58:09 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Analytic D-Modules and Applications
影響因子2023Jan-Erik Bj?rk
視頻videohttp://file.papertrans.cn/157/156514/156514.mp4
學(xué)科分類Mathematics and Its Applications
圖書封面Titlebook: Analytic D-Modules and Applications;  Jan-Erik Bj?rk Book 1993 Springer Science+Business Media Dordrecht 1993 Hypergeometric function.calcu
Pindex Book 1993
The information of publication is updating

書目名稱Analytic D-Modules and Applications影響因子(影響力)




書目名稱Analytic D-Modules and Applications影響因子(影響力)學(xué)科排名




書目名稱Analytic D-Modules and Applications網(wǎng)絡(luò)公開度




書目名稱Analytic D-Modules and Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Analytic D-Modules and Applications被引頻次




書目名稱Analytic D-Modules and Applications被引頻次學(xué)科排名




書目名稱Analytic D-Modules and Applications年度引用




書目名稱Analytic D-Modules and Applications年度引用學(xué)科排名




書目名稱Analytic D-Modules and Applications讀者反饋




書目名稱Analytic D-Modules and Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:57:40 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:26:29 | 只看該作者
https://doi.org/10.1007/978-3-030-37763-2ry of left ..-modules is equal to 2 · dim(.) + 1. for every complex manifold ...We introduce the derived category .. (..) whose objects are bounded complexes of left ..-modules. Various operations from Chapter I are extended to derived categories in section 1 and 2..The construction of direct and in
地板
發(fā)表于 2025-3-22 07:55:10 | 只看該作者
Postdisciplinary Studies in Discourse in ... Given such a pair there exists the direct image sheaf .% MathType!MTEF!2!1!+-% feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr% pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba
5#
發(fā)表于 2025-3-22 09:43:14 | 只看該作者
6#
發(fā)表于 2025-3-22 13:07:47 | 只看該作者
Conclusion: Psychoanalysis as a Cause,ume that zero is the sole critical value of ., . = [..] and SS(.) does not intersect the set .outside the zero-section. In section 1 we study ..-submodules of .(., .) generated by L ? f . when L is a coherent Ox-submodule of M. The main result asserts that Dx(L ?f.) is a coherent Dx-module and
7#
發(fā)表于 2025-3-22 21:05:26 | 只看該作者
Perspektiven der Mathematikdidaktiktion 2 as a preparation to section 3. There we prove that every regular holonomic ..-module on a complex manifold is locally a cyclic module generated by a distribution on the underlying real manifold. The main result is Theorem 7.3.5 which gives an exact functor from RH(..) into the category of reg
8#
發(fā)表于 2025-3-22 21:49:58 | 只看該作者
Perspektiven der Mathematikdidaktikn of .. is presented in the first section. The sheaf of rings .. is coherent and the stalks are regular Auslander rings with global homological dimension equal to ... Let .: .*(.) →. be the projection. Then .... is a subring of ... If . ∈ coh(..) there exists the ....A basic result is the equality S
9#
發(fā)表于 2025-3-23 02:25:58 | 只看該作者
https://doi.org/10.1007/978-3-030-37763-2A coherent ..-module . whose characterstic variety has dimension dim(.) is called holonomic. Let . be a holonomic module. The involutivity of SS(.) implies that it is a conic . analytic set in .*(.). Let {..} be a Whitney stratification for which
10#
發(fā)表于 2025-3-23 07:27:55 | 只看該作者
Holonomic ,-modules,A coherent ..-module . whose characterstic variety has dimension dim(.) is called holonomic. Let . be a holonomic module. The involutivity of SS(.) implies that it is a conic . analytic set in .*(.). Let {..} be a Whitney stratification for which
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 00:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
方山县| 年辖:市辖区| 嘉峪关市| 怀仁县| 玉屏| 和顺县| 平潭县| 石屏县| 罗定市| 长乐市| 红桥区| 布拖县| 封开县| 厦门市| 仲巴县| 城口县| 龙岩市| 罗城| 宁乡县| 迁西县| 会理县| 寻甸| 翼城县| 连州市| 河西区| 海林市| 宁乡县| 海南省| 林周县| 沙田区| 民和| 安徽省| 扶沟县| 嵩明县| 陇西县| 孝义市| 鹤庆县| 太原市| 三河市| 固原市| 昭通市|