找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic Continuation and q-Convexity; Takeo Ohsawa,Thomas Pawlaschyk Book 2022 The Author(s), under exclusive license to Springer Nature

[復(fù)制鏈接]
樓主: 積聚
11#
發(fā)表于 2025-3-23 09:53:10 | 只看該作者
Postdisciplinary Studies in Discourseies. Based on this, Grauert was interested in cohomology of complex spaces and used the .-convexity as a boundary condition in the spirit of Levi and in terms of exhaustion functions. Meanwhile, Fujita investigated the continuity principle on . or . .???.. Tadokoro pointed out that these notions are indeed equivalent.
12#
發(fā)表于 2025-3-23 16:20:59 | 只看該作者
13#
發(fā)表于 2025-3-23 18:02:16 | 只看該作者
14#
發(fā)表于 2025-3-24 01:40:01 | 只看該作者
15#
發(fā)表于 2025-3-24 06:08:44 | 只看該作者
Postdisciplinary Studies in Discourseis reason, it contains both classical and the author’s recent results on the topic of .-plurisubharmonic functions. It serves as a preparation for Chap. . in which we study domains created by . functions. These were introduced by Hunt and Murray in 1978 who defined them in terms of a local maximum p
16#
發(fā)表于 2025-3-24 09:43:23 | 只看該作者
17#
發(fā)表于 2025-3-24 11:20:43 | 只看該作者
Juliet Langman,Holly Hansen-Thomasti and Grauert (1962). Andreotti–Grauert’s finiteness theorem was applied by Andreotti and Norguet (1966–1971) to extend Grauert’s solution of the Levi problem to .-convex spaces. A consequence is that the sets of (.???1)-cycles of .-convex domains with smooth boundary in projective algebraic manifo
18#
發(fā)表于 2025-3-24 18:44:47 | 只看該作者
19#
發(fā)表于 2025-3-24 22:34:03 | 只看該作者
20#
發(fā)表于 2025-3-25 02:26:45 | 只看該作者
Analytic Continuation and Classical Pseudoconvexity,vex domains, the latter defined by plurisubharmonic functions. In the first half of the twentieth century, intense research on these objects accumulated in the groundbreaking proof of Levi’s conjecture by Oka in 1942 on the equivalence of these two types of domains.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 20:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宿州市| 商洛市| 射洪县| 进贤县| 四平市| 九龙县| 安康市| 芦山县| 洪湖市| 社会| 略阳县| 弥渡县| 儋州市| 灵璧县| 东源县| 洪洞县| 独山县| 稻城县| 丰镇市| 且末县| 玛纳斯县| 彭山县| 天镇县| 蓬溪县| 玉溪市| 高阳县| 崇仁县| 靖远县| 龙口市| 屏东市| 南靖县| 墨竹工卡县| 和顺县| 浦县| 安多县| 新乐市| 乐业县| 防城港市| 鹤庆县| 福海县| 铜鼓县|