找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic Continuation and q-Convexity; Takeo Ohsawa,Thomas Pawlaschyk Book 2022 The Author(s), under exclusive license to Springer Nature

[復(fù)制鏈接]
查看: 10854|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:41:00 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Analytic Continuation and q-Convexity
影響因子2023Takeo Ohsawa,Thomas Pawlaschyk
視頻videohttp://file.papertrans.cn/157/156512/156512.mp4
發(fā)行地址Shows how generalized pseudoconvexity attracted increasing interest in the analysis of several complex variables.Is one of the few monographs dealing with q-convexity in the sense of Grauert.Combines
學(xué)科分類SpringerBriefs in Mathematics
圖書封面Titlebook: Analytic Continuation and q-Convexity;  Takeo Ohsawa,Thomas Pawlaschyk Book 2022 The Author(s), under exclusive license to Springer Nature
影響因子.The focus of this book is on the further development of the classical achievements in analysis of several complex variables, the analytic continuation and the analytic structure of sets, to settings in which the? .q-.pseudoconvexity in the sense of Rothstein and the .q-.convexity in the sense of Grauert play a crucial role. After giving a brief survey of notions of generalized convexity and their most important results, the authors present recent statements on analytic continuation related to them.?.Rothstein (1955) first introduced .q-.pseudoconvexity using generalized Hartogs figures. S?odkowski (1986) defined .q-.pseudoconvex sets by means of the existence of exhaustion functions which are .q-.plurisubharmonic in the sense of Hunt and Murray (1978). Examples of .q-.pseudoconvex sets appear as complements of? analytic sets. Here, the relation of the analytic structure of graphs of continuous surfaces whose complements are .q-.pseudoconvex is investigated. As an outcome, the authors generalize results by Hartogs (1909), Shcherbina (1993), and Chirka (2001) on the existence of foliations of pseudoconcave continuous real hypersurfaces by smooth complex ones.?..A similar generalizat
Pindex Book 2022
The information of publication is updating

書目名稱Analytic Continuation and q-Convexity影響因子(影響力)




書目名稱Analytic Continuation and q-Convexity影響因子(影響力)學(xué)科排名




書目名稱Analytic Continuation and q-Convexity網(wǎng)絡(luò)公開度




書目名稱Analytic Continuation and q-Convexity網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Analytic Continuation and q-Convexity被引頻次




書目名稱Analytic Continuation and q-Convexity被引頻次學(xué)科排名




書目名稱Analytic Continuation and q-Convexity年度引用




書目名稱Analytic Continuation and q-Convexity年度引用學(xué)科排名




書目名稱Analytic Continuation and q-Convexity讀者反饋




書目名稱Analytic Continuation and q-Convexity讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:02:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:48:31 | 只看該作者
Postdisciplinary Studies in Discoursep. . in which we study domains created by . functions. These were introduced by Hunt and Murray in 1978 who defined them in terms of a local maximum property, similar to subharmonicity, but replacing harmonic functions by functions pluriharmonic on (.?+?1)-dimensional subspaces.
地板
發(fā)表于 2025-3-22 05:30:49 | 只看該作者
5#
發(fā)表于 2025-3-22 11:46:56 | 只看該作者
6#
發(fā)表于 2025-3-22 14:57:55 | 只看該作者
,-Convexity and ,-Cycle Spaces,i problem to .-convex spaces. A consequence is that the sets of (.???1)-cycles of .-convex domains with smooth boundary in projective algebraic manifolds, which are equipped with complex structures as open subsets of Chow varieties, are in fact holomorphically convex.
7#
發(fā)表于 2025-3-22 20:53:23 | 只看該作者
Book 2022tinuous surfaces whose complements are .q-.pseudoconvex is investigated. As an outcome, the authors generalize results by Hartogs (1909), Shcherbina (1993), and Chirka (2001) on the existence of foliations of pseudoconcave continuous real hypersurfaces by smooth complex ones.?..A similar generalizat
8#
發(fā)表于 2025-3-22 22:13:06 | 只看該作者
9#
發(fā)表于 2025-3-23 05:21:26 | 只看該作者
Analytic Continuation and q-Convexity978-981-19-1239-9Series ISSN 2191-8198 Series E-ISSN 2191-8201
10#
發(fā)表于 2025-3-23 05:58:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 06:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
仲巴县| 阳春市| 永平县| 秦皇岛市| 丹江口市| 襄城县| 河间市| 池州市| 永善县| 新巴尔虎右旗| 青阳县| 崇礼县| 昭觉县| 临沂市| 芮城县| 北海市| 新营市| 伊川县| 哈密市| 桃源县| 霞浦县| 丹巴县| 本溪市| 远安县| 巧家县| 毕节市| 张家港市| 梓潼县| 唐山市| 信丰县| 水城县| 哈密市| 贵南县| 清河县| 怀来县| 封开县| 平湖市| 乌兰浩特市| 汕头市| 安陆市| 东光县|