找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic Continuation and q-Convexity; Takeo Ohsawa,Thomas Pawlaschyk Book 2022 The Author(s), under exclusive license to Springer Nature

[復(fù)制鏈接]
樓主: 積聚
11#
發(fā)表于 2025-3-23 09:53:10 | 只看該作者
Postdisciplinary Studies in Discourseies. Based on this, Grauert was interested in cohomology of complex spaces and used the .-convexity as a boundary condition in the spirit of Levi and in terms of exhaustion functions. Meanwhile, Fujita investigated the continuity principle on . or . .???.. Tadokoro pointed out that these notions are indeed equivalent.
12#
發(fā)表于 2025-3-23 16:20:59 | 只看該作者
13#
發(fā)表于 2025-3-23 18:02:16 | 只看該作者
14#
發(fā)表于 2025-3-24 01:40:01 | 只看該作者
15#
發(fā)表于 2025-3-24 06:08:44 | 只看該作者
Postdisciplinary Studies in Discourseis reason, it contains both classical and the author’s recent results on the topic of .-plurisubharmonic functions. It serves as a preparation for Chap. . in which we study domains created by . functions. These were introduced by Hunt and Murray in 1978 who defined them in terms of a local maximum p
16#
發(fā)表于 2025-3-24 09:43:23 | 只看該作者
17#
發(fā)表于 2025-3-24 11:20:43 | 只看該作者
Juliet Langman,Holly Hansen-Thomasti and Grauert (1962). Andreotti–Grauert’s finiteness theorem was applied by Andreotti and Norguet (1966–1971) to extend Grauert’s solution of the Levi problem to .-convex spaces. A consequence is that the sets of (.???1)-cycles of .-convex domains with smooth boundary in projective algebraic manifo
18#
發(fā)表于 2025-3-24 18:44:47 | 只看該作者
19#
發(fā)表于 2025-3-24 22:34:03 | 只看該作者
20#
發(fā)表于 2025-3-25 02:26:45 | 只看該作者
Analytic Continuation and Classical Pseudoconvexity,vex domains, the latter defined by plurisubharmonic functions. In the first half of the twentieth century, intense research on these objects accumulated in the groundbreaking proof of Levi’s conjecture by Oka in 1942 on the equivalence of these two types of domains.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 06:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黑水县| 宣化县| 庐江县| 中阳县| 彝良县| 区。| 彩票| 建昌县| 南溪县| 若尔盖县| 湾仔区| 成安县| 镇沅| 肇州县| 绥棱县| 徐州市| 平度市| 司法| 衡山县| 金沙县| 浠水县| 鹤岗市| 阿荣旗| 河西区| 谢通门县| 佛山市| 平潭县| 松江区| 崇文区| 绩溪县| 长沙市| 外汇| 清涧县| 临沂市| 留坝县| 团风县| 色达县| 阳高县| 马龙县| 石家庄市| 达孜县|