找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analytic Continuation and q-Convexity; Takeo Ohsawa,Thomas Pawlaschyk Book 2022 The Author(s), under exclusive license to Springer Nature

[復(fù)制鏈接]
樓主: 積聚
11#
發(fā)表于 2025-3-23 09:53:10 | 只看該作者
Postdisciplinary Studies in Discourseies. Based on this, Grauert was interested in cohomology of complex spaces and used the .-convexity as a boundary condition in the spirit of Levi and in terms of exhaustion functions. Meanwhile, Fujita investigated the continuity principle on . or . .???.. Tadokoro pointed out that these notions are indeed equivalent.
12#
發(fā)表于 2025-3-23 16:20:59 | 只看該作者
13#
發(fā)表于 2025-3-23 18:02:16 | 只看該作者
14#
發(fā)表于 2025-3-24 01:40:01 | 只看該作者
15#
發(fā)表于 2025-3-24 06:08:44 | 只看該作者
Postdisciplinary Studies in Discourseis reason, it contains both classical and the author’s recent results on the topic of .-plurisubharmonic functions. It serves as a preparation for Chap. . in which we study domains created by . functions. These were introduced by Hunt and Murray in 1978 who defined them in terms of a local maximum p
16#
發(fā)表于 2025-3-24 09:43:23 | 只看該作者
17#
發(fā)表于 2025-3-24 11:20:43 | 只看該作者
Juliet Langman,Holly Hansen-Thomasti and Grauert (1962). Andreotti–Grauert’s finiteness theorem was applied by Andreotti and Norguet (1966–1971) to extend Grauert’s solution of the Levi problem to .-convex spaces. A consequence is that the sets of (.???1)-cycles of .-convex domains with smooth boundary in projective algebraic manifo
18#
發(fā)表于 2025-3-24 18:44:47 | 只看該作者
19#
發(fā)表于 2025-3-24 22:34:03 | 只看該作者
20#
發(fā)表于 2025-3-25 02:26:45 | 只看該作者
Analytic Continuation and Classical Pseudoconvexity,vex domains, the latter defined by plurisubharmonic functions. In the first half of the twentieth century, intense research on these objects accumulated in the groundbreaking proof of Levi’s conjecture by Oka in 1942 on the equivalence of these two types of domains.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 06:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沾益县| 丹寨县| 湄潭县| 元氏县| 津市市| 广宗县| 蕉岭县| 麻江县| 陵川县| 石棉县| 荃湾区| 威海市| 安阳市| 剑川县| 泽普县| 民勤县| 太仆寺旗| 藁城市| 长阳| 格尔木市| 南郑县| 蓬溪县| 枣庄市| 麻江县| 淮安市| 阳城县| 晋宁县| 洛宁县| 山阳县| 平阳县| 济阳县| 成安县| 晋江市| 宣汉县| 哈尔滨市| 浦城县| 城口县| 莎车县| 格尔木市| 扎赉特旗| 阿巴嘎旗|