找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis, Geometry and Probability; Essays in honour of Rajendra Bhatia Book 1996 Hindustan Book Agency (India) 1996

[復(fù)制鏈接]
樓主: magnify
21#
發(fā)表于 2025-3-25 07:17:06 | 只看該作者
22#
發(fā)表于 2025-3-25 08:08:00 | 只看該作者
The Structure Of Classical Noise,s transparent if one succeeds to represent it as a transformation of a noise process. In classical probability theory one has an exhaustive classification of possible noise processes. In this lecture we shall explain this classification partially on a heuristic level.
23#
發(fā)表于 2025-3-25 12:25:00 | 只看該作者
Representations of ,-commutation relations,ation relations also make their appearance in the study of quantum groups and their representations. Here we look at the representation theory as a simple extension of the same for the usual canonical commutation relation (CCR) [see e.g. [12]].
24#
發(fā)表于 2025-3-25 18:14:38 | 只看該作者
25#
發(fā)表于 2025-3-25 20:35:53 | 只看該作者
26#
發(fā)表于 2025-3-26 02:57:41 | 只看該作者
Notes On The Imprimitivity Theorem,might serve some purpose as they restrict themselves to just these notions and a prospective reader who does not want to necessarily read about the mathematical foundations of quantum mechanics might be able to get directly to the imprimitivity theorem.
27#
發(fā)表于 2025-3-26 04:39:24 | 只看該作者
28#
發(fā)表于 2025-3-26 10:07:29 | 只看該作者
Parthasarathy, a mathematican, teacher and expositor of renown. Some of the articles, by his coworkers, are related to his work on probability, quantum probability and group representations. Others are on diverse topics in analysis, geometry and number theory.978-93-80250-87-8
29#
發(fā)表于 2025-3-26 15:54:07 | 只看該作者
30#
發(fā)表于 2025-3-26 16:56:59 | 只看該作者
https://doi.org/10.1007/978-981-16-1630-3oup. The ideas of Weyl, and their natural development by his successors, notably Stone, Von Neumann, Mackey, Segal, Shale, Weil, and many others have had and still continue to have a great impact on many areas of mathematics and physics. This paper is an exposition of some of the themes that flow from these ideas.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 05:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长阳| 墨竹工卡县| 阿图什市| 临澧县| 太仆寺旗| 苏尼特右旗| 鱼台县| 花莲市| 西乌珠穆沁旗| 湛江市| 来宾市| 天台县| 兴安盟| 怀来县| 拉孜县| 闽清县| 滨海县| 邯郸市| 潞西市| 新化县| 积石山| 惠来县| 太仆寺旗| 英山县| 崇仁县| 荣昌县| 邢台市| 张北县| 天津市| 德安县| 峨眉山市| 花莲市| 高台县| 淳安县| 鄱阳县| 修水县| 盖州市| 兴化市| 乌拉特中旗| 安乡县| 克东县|