找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis, Geometry and Probability; Essays in honour of Rajendra Bhatia Book 1996 Hindustan Book Agency (India) 1996

[復(fù)制鏈接]
樓主: magnify
31#
發(fā)表于 2025-3-26 22:22:50 | 只看該作者
32#
發(fā)表于 2025-3-27 01:37:36 | 只看該作者
33#
發(fā)表于 2025-3-27 05:34:07 | 只看該作者
34#
發(fā)表于 2025-3-27 12:40:11 | 只看該作者
35#
發(fā)表于 2025-3-27 16:34:04 | 只看該作者
36#
發(fā)表于 2025-3-27 18:49:14 | 只看該作者
Counting Finite Groups,these questions have partial (and, in some cases, complete) answers. Their investigations take us into the domain of both finite group theory and analytic number theory. It is the purpose of this article to survey these investigations and to adumbrate problems and topics for further research.
37#
發(fā)表于 2025-3-28 00:14:49 | 只看該作者
38#
發(fā)表于 2025-3-28 02:46:33 | 只看該作者
Book 1996e a glimpse into an active field of research. All articles are accessible to graduate students. The articles were invited in honour of K. R. Parthasarathy, a mathematican, teacher and expositor of renown. Some of the articles, by his coworkers, are related to his work on probability, quantum probabi
39#
發(fā)表于 2025-3-28 06:52:40 | 只看該作者
https://doi.org/10.1007/978-981-32-9339-7g the form of irreducible representations of .(.) admitting non-zero Iwahori-fixed vectors. In the final section we define the Brylinski quotient .(.) for the space T. equipped with the natural action of the symmetric group . and prove that the space of Deligne-Langlands parameters of these representations is homeomorphic to .(.).
40#
發(fā)表于 2025-3-28 12:04:26 | 只看該作者
The Representation theory of ,-adic ,(,) and Deligne-Langlands parameters,g the form of irreducible representations of .(.) admitting non-zero Iwahori-fixed vectors. In the final section we define the Brylinski quotient .(.) for the space T. equipped with the natural action of the symmetric group . and prove that the space of Deligne-Langlands parameters of these representations is homeomorphic to .(.).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 07:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大悟县| 将乐县| 武汉市| 贵定县| 册亨县| 慈溪市| 临潭县| 龙南县| 红安县| 安新县| 大丰市| 潜山县| 南昌市| 勃利县| 阜新市| 萝北县| 英超| 久治县| 博湖县| 横山县| 宜川县| 大方县| 南部县| 余干县| 博客| 玛曲县| 东辽县| 上林县| 大兴区| 云霄县| 云南省| 青铜峡市| 鹤壁市| 哈密市| 东台市| 余姚市| 泰顺县| 卫辉市| 原阳县| 济南市| 姜堰市|