找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis on h-Harmonics and Dunkl Transforms; Feng Dai,Yuan Xu,Sergey Tikhonov Textbook 2015 Springer Basel 2015 Dunkl transforms.h-harmon

[復(fù)制鏈接]
查看: 46237|回復(fù): 42
樓主
發(fā)表于 2025-3-21 16:25:51 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Analysis on h-Harmonics and Dunkl Transforms
影響因子2023Feng Dai,Yuan Xu,Sergey Tikhonov
視頻videohttp://file.papertrans.cn/157/156479/156479.mp4
發(fā)行地址Focusses on the analysis side of h-harmonics and Dunkl transforms.Written in a concise yet informative style.No previous knowledge on reflection groups required
學(xué)科分類Advanced Courses in Mathematics - CRM Barcelona
圖書封面Titlebook: Analysis on h-Harmonics and Dunkl Transforms;  Feng Dai,Yuan Xu,Sergey Tikhonov Textbook 2015 Springer Basel 2015 Dunkl transforms.h-harmon
影響因子?This book provides an introduction to h-harmonics and Dunkl transforms. These are extensions of the ordinary spherical harmonics and Fourier transforms, in which the usual Lebesgue measure is replaced by a reflection-invariant weighted measure. The authors’ focus is on the analysis side of both h-harmonics and Dunkl transforms.Graduate students and researchers working in approximation theory, harmonic analysis, and functional analysis will benefit from this book.
Pindex Textbook 2015
The information of publication is updating

書目名稱Analysis on h-Harmonics and Dunkl Transforms影響因子(影響力)




書目名稱Analysis on h-Harmonics and Dunkl Transforms影響因子(影響力)學(xué)科排名




書目名稱Analysis on h-Harmonics and Dunkl Transforms網(wǎng)絡(luò)公開度




書目名稱Analysis on h-Harmonics and Dunkl Transforms網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Analysis on h-Harmonics and Dunkl Transforms被引頻次




書目名稱Analysis on h-Harmonics and Dunkl Transforms被引頻次學(xué)科排名




書目名稱Analysis on h-Harmonics and Dunkl Transforms年度引用




書目名稱Analysis on h-Harmonics and Dunkl Transforms年度引用學(xué)科排名




書目名稱Analysis on h-Harmonics and Dunkl Transforms讀者反饋




書目名稱Analysis on h-Harmonics and Dunkl Transforms讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:21:18 | 只看該作者
2297-0304 sis side of both h-harmonics and Dunkl transforms.Graduate students and researchers working in approximation theory, harmonic analysis, and functional analysis will benefit from this book.978-3-0348-0886-6978-3-0348-0887-3Series ISSN 2297-0304 Series E-ISSN 2297-0312
板凳
發(fā)表于 2025-3-22 01:13:53 | 只看該作者
地板
發(fā)表于 2025-3-22 07:36:08 | 只看該作者
5#
發(fā)表于 2025-3-22 12:05:54 | 只看該作者
https://doi.org/10.1007/3-7643-7674-0ernel of the spherical .-harmonics. This expression is an analog of the zonal harmonics, which suggests a definition of a convolution operator, defined in Section 3.3 and it helps us to study various summability methods for spherical .-harmonic expansions.
6#
發(fā)表于 2025-3-22 15:03:12 | 只看該作者
Dunkl Operators Associated with Reflection Groups,mily of commuting first-order differential and difference operators associated with a reflection group, and are introduced in Section 2.2. The intertwining operator between the Dunkl operators and ordinary derivatives is discussed in Section 2.3.
7#
發(fā)表于 2025-3-22 17:31:18 | 只看該作者
8#
發(fā)表于 2025-3-23 00:40:52 | 只看該作者
https://doi.org/10.1007/3-7643-7674-0he classical spherical harmonics and the Fourier transform, in which the underlying rotation group is replaced by a finite reflection group. This chapter serves as an introduction, in which we briefly recall classical results on the spherical harmonics and the Fourier transform. Since all results ar
9#
發(fā)表于 2025-3-23 02:37:55 | 只看該作者
https://doi.org/10.1007/3-7643-7674-0ghted spaces, we start with the definition of a family of weight functions invariant under a reflection group in Section 2.1. Dunkl operators are a family of commuting first-order differential and difference operators associated with a reflection group, and are introduced in Section 2.2. The intertw
10#
發(fā)表于 2025-3-23 05:42:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高雄市| 大悟县| 绍兴县| 福泉市| 靖西县| 库车县| 阜城县| 江陵县| 盐山县| 屏东市| 冀州市| 咸阳市| 崇阳县| 乳山市| 武夷山市| 衢州市| 苗栗市| 陕西省| 灵山县| 泌阳县| 吐鲁番市| 桑日县| 扎赉特旗| 黎川县| 滦南县| 墨竹工卡县| 扎鲁特旗| 民勤县| 安化县| 阳西县| 峨山| 阳泉市| 吴忠市| 镇宁| 多伦县| 遂昌县| 增城市| 金昌市| 乌兰浩特市| 宁陕县| 八宿县|