找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis on h-Harmonics and Dunkl Transforms; Feng Dai,Yuan Xu,Sergey Tikhonov Textbook 2015 Springer Basel 2015 Dunkl transforms.h-harmon

[復(fù)制鏈接]
樓主: gratuity
11#
發(fā)表于 2025-3-23 13:04:47 | 只看該作者
Zimbabwe: DDR by Trial and Error,n the sphere ., which are useful in the embedding theory of function spaces. The multiplier theorem and the Littlewood–Paley inequality established in the prior chapter play crucial roles in their proofs.
12#
發(fā)表于 2025-3-23 17:25:37 | 只看該作者
13#
發(fā)表于 2025-3-23 19:16:28 | 只看該作者
The Study of Defence Conversion since 1945,pansions on . and that of the Dunkl transform. This theorem is stated together with some related definitions and notations in Section 7.1. The proof of this transference theorem is, however, rather long, so we split it into three parts, which are given in the Sections 7.2, 7.3, and 7.4, respectively
14#
發(fā)表于 2025-3-24 00:20:24 | 只看該作者
https://doi.org/10.1007/978-3-0348-0887-3Dunkl transforms; h-harmonics; multiplier theorem; reflection groups
15#
發(fā)表于 2025-3-24 03:43:17 | 只看該作者
16#
發(fā)表于 2025-3-24 07:58:07 | 只看該作者
Sharp Jackson and Sharp Marchaud Inequalities,n the sphere ., which are useful in the embedding theory of function spaces. The multiplier theorem and the Littlewood–Paley inequality established in the prior chapter play crucial roles in their proofs.
17#
發(fā)表于 2025-3-24 13:46:21 | 只看該作者
Dunkl Transform,chapter we study the Dunkl transform from the point of view of harmonic analysis. In Section 6.1 we show that the Dunkl transform is an isometry in . space with respect to the measure . on . and it preserves Schwartz class of functions.
18#
發(fā)表于 2025-3-24 14:52:20 | 只看該作者
19#
發(fā)表于 2025-3-24 20:42:49 | 只看該作者
Textbook 2015ms, in which the usual Lebesgue measure is replaced by a reflection-invariant weighted measure. The authors’ focus is on the analysis side of both h-harmonics and Dunkl transforms.Graduate students and researchers working in approximation theory, harmonic analysis, and functional analysis will benefit from this book.
20#
發(fā)表于 2025-3-25 02:00:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德化县| 新郑市| 江油市| 子长县| 新源县| 潮州市| 榆中县| 卫辉市| 通渭县| 广宗县| 全南县| 兴宁市| 通海县| 镇宁| 宁武县| 会昌县| 塔河县| 芦山县| 绥德县| 塔城市| 浠水县| 澄迈县| 屯门区| 应用必备| 湘潭县| 平塘县| 宁波市| 科尔| 类乌齐县| 马山县| 博客| 蒙山县| 祥云县| 临邑县| 边坝县| 化德县| 霍邱县| 乐平市| 老河口市| 沙田区| 恭城|