找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis of Symbolic Data; Exploratory Methods Hans-Hermann Bock,Edwin Diday Conference proceedings 2000 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
查看: 32949|回復(fù): 59
樓主
發(fā)表于 2025-3-21 17:48:10 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Analysis of Symbolic Data
期刊簡(jiǎn)稱Exploratory Methods
影響因子2023Hans-Hermann Bock,Edwin Diday
視頻videohttp://file.papertrans.cn/157/156452/156452.mp4
學(xué)科分類Studies in Classification, Data Analysis, and Knowledge Organization
圖書封面Titlebook: Analysis of Symbolic Data; Exploratory Methods  Hans-Hermann Bock,Edwin Diday Conference proceedings 2000 Springer-Verlag Berlin Heidelberg
影響因子Raymond Bisdorff CRP-GL, Luxembourg The development of the SODAS software based on symbolic data analysis was extensively described in the previous chapters of this book. It was accompanied by a series of benchmark activities involving some official statistical institutes throughout Europe. Partners in these benchmark activities were the National Statistical Institute (INE) of Portugal, the Instituto Vasco de Estadistica Euskal (EUSTAT) from Spain, the Office For National Statistics (ONS) from the United Kingdom, the Inspection Generale de la Securite Sociale (IGSS) from Luxembourg 1 and marginally the University of Athens . The principal goal of these benchmark activities was to demonstrate the usefulness of symbolic data analysis for practical statistical exploitation and analysis of official statistical data. This chapter aims to report briefly on these activities by presenting some signifi- cant insights into practical results obtained by the benchmark partners in using the SODAS software package as described in chapter 14 below.
Pindex Conference proceedings 2000
The information of publication is updating

書目名稱Analysis of Symbolic Data影響因子(影響力)




書目名稱Analysis of Symbolic Data影響因子(影響力)學(xué)科排名




書目名稱Analysis of Symbolic Data網(wǎng)絡(luò)公開度




書目名稱Analysis of Symbolic Data網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Analysis of Symbolic Data被引頻次




書目名稱Analysis of Symbolic Data被引頻次學(xué)科排名




書目名稱Analysis of Symbolic Data年度引用




書目名稱Analysis of Symbolic Data年度引用學(xué)科排名




書目名稱Analysis of Symbolic Data讀者反饋




書目名稱Analysis of Symbolic Data讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:28:20 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:17:55 | 只看該作者
地板
發(fā)表于 2025-3-22 05:07:58 | 只看該作者
Lars Holtkamp,Nils Arne Brockmannmplex type of data which we call . as they contain . and they are . In this context, we have a rapidly increasing need to extend standard data analysis methods (exploratory, graphical representations, clustering, factorial analysis, discrimination,…) to these symbolic data.
5#
發(fā)表于 2025-3-22 12:08:36 | 只看該作者
6#
發(fā)表于 2025-3-22 14:45:38 | 只看該作者
https://doi.org/10.1007/978-3-322-80430-3se similarities as their data input. For example, in cluster analysis where we look for ‘homogeneous’ classes ., .,… of objects, it is typically required that pairs of objects from the . class have a . similarity (i.e., a . dissimilarity) and, conversely, that the similarity is . for pairs of objects from. classes (see Section 11.1).
7#
發(fā)表于 2025-3-22 20:50:52 | 只看該作者
8#
發(fā)表于 2025-3-23 01:15:46 | 只看該作者
Symbolic Data Analysis and the SODAS Project: Purpose, History, Perspective,mplex type of data which we call . as they contain . and they are . In this context, we have a rapidly increasing need to extend standard data analysis methods (exploratory, graphical representations, clustering, factorial analysis, discrimination,…) to these symbolic data.
9#
發(fā)表于 2025-3-23 01:51:58 | 只看該作者
10#
發(fā)表于 2025-3-23 06:23:38 | 只看該作者
Similarity and Dissimilarity,se similarities as their data input. For example, in cluster analysis where we look for ‘homogeneous’ classes ., .,… of objects, it is typically required that pairs of objects from the . class have a . similarity (i.e., a . dissimilarity) and, conversely, that the similarity is . for pairs of objects from. classes (see Section 11.1).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丹东市| 福建省| 理塘县| 玛多县| 麻江县| 靖宇县| 清新县| 嘉峪关市| 海林市| 阜阳市| 舞钢市| 珠海市| 通山县| 淄博市| 杨浦区| 榆社县| 酒泉市| 施秉县| 峡江县| 晋州市| 福贡县| 竹山县| 河曲县| 赫章县| 新干县| 青神县| 巴林左旗| 建水县| 温州市| 华蓥市| 祥云县| 嘉义市| 邵阳市| 安康市| 榆社县| 峨边| 望江县| 盐边县| 平果县| 龙陵县| 额敏县|