找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis of Symbolic Data; Exploratory Methods Hans-Hermann Bock,Edwin Diday Conference proceedings 2000 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
樓主: Hypothesis
11#
發(fā)表于 2025-3-23 12:17:13 | 只看該作者
Illustrative Benchmark Analyses,the National Statistical Institute (INE) of Portugal, the Instituto Vasco de Estadistica Euskal (EUSTAT) from Spain, the Office For National Statistics (ONS) from the United Kingdom, the Inspection Générale de la Sécurité Sociale (IGSS) from Luxembourg and marginally the University of Athens..
12#
發(fā)表于 2025-3-23 17:02:09 | 只看該作者
Lars Holtkamp,Nils Arne Brockmannual resulted in just one single ‘value’ or ‘category’ such as in the statements: ‘the height of a person is 170 cm’, ‘the colour of a car is red’ etc. Depending on the situation, these variables were classified into . (continuous or discrete) and . (ordinal or nominal) ones.
13#
發(fā)表于 2025-3-23 19:56:52 | 只看該作者
Direkte Demokratie in Deutschland,sses. Here, we focus on the . from a classical dataset extracted from a relational database. We also define a . which aims at reducing over-generalization. Finally, we present how to build a symbolic dataset from several datasets by applying a .
14#
發(fā)表于 2025-3-24 01:38:05 | 只看該作者
15#
發(fā)表于 2025-3-24 05:24:45 | 只看該作者
Conference proceedings 2000tical statistical exploitation and analysis of official statistical data. This chapter aims to report briefly on these activities by presenting some signifi- cant insights into practical results obtained by the benchmark partners in using the SODAS software package as described in chapter 14 below.
16#
發(fā)表于 2025-3-24 07:02:42 | 只看該作者
The Classical Data Situation,ual resulted in just one single ‘value’ or ‘category’ such as in the statements: ‘the height of a person is 170 cm’, ‘the colour of a car is red’ etc. Depending on the situation, these variables were classified into . (continuous or discrete) and . (ordinal or nominal) ones.
17#
發(fā)表于 2025-3-24 13:38:37 | 只看該作者
Generation of Symbolic Objects from Relational Databases,sses. Here, we focus on the . from a classical dataset extracted from a relational database. We also define a . which aims at reducing over-generalization. Finally, we present how to build a symbolic dataset from several datasets by applying a .
18#
發(fā)表于 2025-3-24 17:19:25 | 只看該作者
Symbolic Factor Analysis,ipal component analysis (PCA), the proposed method visualizes each object . by a . in .. Whereas the classical PCA is briefly sketched in section 9.1, we describe our generalized method in section 9.2. Thereby, we present a typical example concerning oils and fats in order to illustrate the effectiveness of the proposed symbolic PCA method.
19#
發(fā)表于 2025-3-24 22:57:01 | 只看該作者
Conference proceedings 2000apters of this book. It was accompanied by a series of benchmark activities involving some official statistical institutes throughout Europe. Partners in these benchmark activities were the National Statistical Institute (INE) of Portugal, the Instituto Vasco de Estadistica Euskal (EUSTAT) from Spai
20#
發(fā)表于 2025-3-25 01:08:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 04:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南昌县| 汤阴县| 黄梅县| 蒙山县| 兖州市| 寿宁县| 固原市| 汝阳县| 乌什县| 汕尾市| 房产| 肥城市| 儋州市| 出国| 彭水| 肥乡县| 利津县| 年辖:市辖区| 宣恩县| 淮阳县| 屏山县| 六盘水市| 蓝田县| 德江县| 册亨县| 东方市| 罗田县| 大庆市| 横峰县| 安丘市| 桂林市| 林州市| 内丘县| 临朐县| 花垣县| 定安县| 怀化市| 宜宾市| 河西区| 涞源县| 怀柔区|