找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis of Images, Social Networks and Texts; 9th International Co Wil M. P. van der Aalst,Vladimir Batagelj,Elena Tu Conference proceedin

[復(fù)制鏈接]
樓主: 不能平庸
41#
發(fā)表于 2025-3-28 16:07:44 | 只看該作者
https://doi.org/10.1007/978-3-8348-9370-3s. ELMo and BERT architectures are compared on the task of ranking Russian words according to the degree of their semantic change over time. We use several methods for aggregation of contextualized embeddings from these architectures and evaluate their performance. Finally, we compare unsupervised and supervised techniques in this task.
42#
發(fā)表于 2025-3-28 22:35:59 | 只看該作者
43#
發(fā)表于 2025-3-29 01:52:19 | 只看該作者
44#
發(fā)表于 2025-3-29 03:52:30 | 只看該作者
45#
發(fā)表于 2025-3-29 08:00:57 | 只看該作者
Programmierbare Logikbausteine,ads of high-quality media that publishes news in accordance with the classical model. We prove dataset eligibility for training by building an abstractive summarization framework based on pre-trained language models and comparing summarization results with extractive baselines.
46#
發(fā)表于 2025-3-29 14:59:34 | 只看該作者
https://doi.org/10.1007/978-3-8348-9038-2l word representations outperform previously proposed feature-based models for discourse relation classification. By ensembling both methods, we are able to further improve the performance of the discourse relation classification achieving the new state of the art for Russian.
47#
發(fā)表于 2025-3-29 18:58:49 | 只看該作者
Abstractive Summarization of Russian News Learning on Quality Mediaads of high-quality media that publishes news in accordance with the classical model. We prove dataset eligibility for training by building an abstractive summarization framework based on pre-trained language models and comparing summarization results with extractive baselines.
48#
發(fā)表于 2025-3-29 20:42:57 | 只看該作者
RST Discourse Parser for Russian: An Experimental Study of Deep Learning Modelsl word representations outperform previously proposed feature-based models for discourse relation classification. By ensembling both methods, we are able to further improve the performance of the discourse relation classification achieving the new state of the art for Russian.
49#
發(fā)表于 2025-3-30 01:52:24 | 只看該作者
Conference proceedings 2021ers are organized in topical sections as follows: invited papers; natural language processing; computer vision; social network analysis; data analysis and machine learning; theoretical machine learning and optimization; and process mining. ..?.
50#
發(fā)表于 2025-3-30 07:22:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 22:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
张掖市| 舒兰市| 进贤县| 黄梅县| 大名县| 蓬溪县| 庆元县| 泸州市| 监利县| 阿拉善左旗| 文山县| 常熟市| 内黄县| 岑巩县| 黄平县| 睢宁县| 如皋市| 政和县| 绥化市| 牡丹江市| 呼伦贝尔市| 镇雄县| 清流县| 临西县| 重庆市| 特克斯县| 田林县| 蒙自县| 宜都市| 洛扎县| 余姚市| 上饶市| 桦南县| 辉南县| 平江县| 岳池县| 永兴县| 类乌齐县| 三都| 鄂托克旗| 巴彦淖尔市|