找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis of Images, Social Networks and Texts; 9th International Co Wil M. P. van der Aalst,Vladimir Batagelj,Elena Tu Conference proceedin

[復(fù)制鏈接]
查看: 7364|回復(fù): 57
樓主
發(fā)表于 2025-3-21 18:39:09 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Analysis of Images, Social Networks and Texts
期刊簡稱9th International Co
影響因子2023Wil M. P. van der Aalst,Vladimir Batagelj,Elena Tu
視頻videohttp://file.papertrans.cn/157/156376/156376.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Analysis of Images, Social Networks and Texts; 9th International Co Wil M. P. van der Aalst,Vladimir Batagelj,Elena Tu Conference proceedin
影響因子This book constitutes revised selected papers from the 9th International Conference on Analysis of Images, Social Networks and Texts, AIST 2020, held during October 15-16, 2020. The conference was planned to take place in Moscow, Russia, but changed to an online format due to the COVID-19 pandemic..The 27 full papers and 4 short papers presented in this volume were carefully reviewed and selected from a total of 108 qualified submissions. The papers are organized in topical sections as follows: invited papers; natural language processing; computer vision; social network analysis; data analysis and machine learning; theoretical machine learning and optimization; and process mining. ..?.
Pindex Conference proceedings 2021
The information of publication is updating

書目名稱Analysis of Images, Social Networks and Texts影響因子(影響力)




書目名稱Analysis of Images, Social Networks and Texts影響因子(影響力)學(xué)科排名




書目名稱Analysis of Images, Social Networks and Texts網(wǎng)絡(luò)公開度




書目名稱Analysis of Images, Social Networks and Texts網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Analysis of Images, Social Networks and Texts被引頻次




書目名稱Analysis of Images, Social Networks and Texts被引頻次學(xué)科排名




書目名稱Analysis of Images, Social Networks and Texts年度引用




書目名稱Analysis of Images, Social Networks and Texts年度引用學(xué)科排名




書目名稱Analysis of Images, Social Networks and Texts讀者反饋




書目名稱Analysis of Images, Social Networks and Texts讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:00:45 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:45:09 | 只看該作者
地板
發(fā)表于 2025-3-22 06:32:20 | 只看該作者
https://doi.org/10.1007/978-3-8348-9038-2veral concerns given the critical impact that biased decisions may have on individuals or on society as a whole. Not only unfair outcomes affect human rights, they also undermine public trust in ML and AI. In this paper we address fairness issues of ML models based on decision outcomes, and we show
5#
發(fā)表于 2025-3-22 11:58:08 | 只看該作者
https://doi.org/10.1007/978-3-8348-9038-2consisting of documents, issued by a state agency. The main challenges of this corpus are: 1) the annotation scheme differs greatly from the one used for the general domain corpora, and 2) the documents are written in a language other than English. Unlike expectations, the state-of-the-art transform
6#
發(fā)表于 2025-3-22 13:08:58 | 只看該作者
7#
發(fā)表于 2025-3-22 20:41:50 | 只看該作者
Programmierbare Logikbausteine,om Wikipedia and an answer, derived from the paragraph. The task is to take both the question and a paragraph as input and come up with a yes/no answer, i.e. to produce a binary output. In this paper, we present a reproducible approach to DaNetQA creation and investigate transfer learning methods fo
8#
發(fā)表于 2025-3-22 22:18:08 | 只看該作者
https://doi.org/10.1007/978-3-8348-9038-2an data. We train topic models using three algorithms (LDA and ARTM – sparse and dense) and evaluate their quality. We compute topic vectors for sentences of a metaphor-annotated Russian corpus and train several classifiers to identify metaphor with these vectors. We compare the performance of the t
9#
發(fā)表于 2025-3-23 01:58:28 | 只看該作者
Programmierbare Logikbausteine,mple, in the field of teaching – for the automatic creation of tests for training materials or the enrichment of interaction techniques for question-answering systems. Leading research in this area shows that models based on the Seq2Seq architecture achieve the best quality. However, such models do
10#
發(fā)表于 2025-3-23 08:08:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 21:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灌南县| 洛川县| 石城县| 鱼台县| 潍坊市| 巴彦淖尔市| 梁河县| 和田市| 南昌县| 宽甸| 益阳市| 侯马市| 五指山市| 沙河市| 平陆县| 彩票| 繁峙县| 洛川县| 宁化县| 郸城县| 武冈市| 盱眙县| 雅安市| 兴国县| 平凉市| 安阳市| 兰溪市| 同德县| 连云港市| 乌鲁木齐县| 宁乡县| 大庆市| 奈曼旗| 铜梁县| 普洱| 兴城市| 平乐县| 民勤县| 金平| 大荔县| 曲靖市|