找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis of Divergence; Control and Manageme William O. Bray,?aslav V. Stanojevi? Book 1999 Birkh?user Boston 1999 Fourier transform.Sequen

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 23:18:20 | 只看該作者
32#
發(fā)表于 2025-3-27 05:03:43 | 只看該作者
Digitalisierung als Transformation? flat curves in the plane. Our results, obtained by scaling, can be used to recover, up to the endpoints, the results previously obtained in [4], [1], and [2]. We also prove some three dimensional analogs of those results.
33#
發(fā)表于 2025-3-27 06:16:50 | 只看該作者
34#
發(fā)表于 2025-3-27 11:04:19 | 只看該作者
35#
發(fā)表于 2025-3-27 14:28:54 | 只看該作者
36#
發(fā)表于 2025-3-27 21:47:34 | 只看該作者
37#
發(fā)表于 2025-3-27 23:08:43 | 只看該作者
38#
發(fā)表于 2025-3-28 02:15:35 | 只看該作者
Multipliers and square functions for ,, spaces over Vilenkin groups. by Sunouchi in the dyadic case in 1951. For the dyadic group G it is proved that the function with values φ(k) = k2. on the j. dyadic block of G is an H. - multiplier with respect to the Walsh functions {ω. : 0 ≤ k ≤ ∞}. This theorem implies that Sunouchi’s square function S. characterizes H., sol
39#
發(fā)表于 2025-3-28 07:49:48 | 只看該作者
40#
發(fā)表于 2025-3-28 12:34:28 | 只看該作者
Scaling properties of infinitely flat curves and surfaces flat curves in the plane. Our results, obtained by scaling, can be used to recover, up to the endpoints, the results previously obtained in [4], [1], and [2]. We also prove some three dimensional analogs of those results.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 02:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海阳市| 钦州市| 辽阳县| 遂宁市| 凤凰县| 政和县| 曲水县| 广昌县| 拉萨市| 瑞金市| 宜川县| 苍南县| 黎平县| 安溪县| 洪雅县| 西乡县| 浙江省| 普兰县| 广灵县| 商水县| 松溪县| 麻城市| 德格县| 新绛县| 肥西县| 大冶市| 保靖县| 南宁市| 渝北区| 陆川县| 遂溪县| 渭南市| 长武县| 屏山县| 衡南县| 醴陵市| 罗田县| 南丰县| 石狮市| 都昌县| 奈曼旗|