找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis of Divergence; Control and Manageme William O. Bray,?aslav V. Stanojevi? Book 1999 Birkh?user Boston 1999 Fourier transform.Sequen

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 09:53:11 | 只看該作者
Applied and Numerical Harmonic Analysishttp://image.papertrans.cn/a/image/156350.jpg
12#
發(fā)表于 2025-3-23 17:30:37 | 只看該作者
https://doi.org/10.1007/978-3-658-36634-6The Legendre functions.occurring in this paper are sometimes called modlfied Legendre functions, or Legendre functions on the cut. They are defined in [2, p.143, eq. (6)] as . for -1 < x < 1, where F is Gauss’s hypergeometric function and . and . are real or complex parameters. They satisfy the recurrence relation ..
13#
發(fā)表于 2025-3-23 18:31:16 | 只看該作者
Schwerpunkt Business Model InnovationWe show that the results of Love and Hunter can be reformulated to obtain convergence results at the endpoints of the interval -1 ≤ x ≤ 1.
14#
發(fā)表于 2025-3-23 23:46:53 | 只看該作者
15#
發(fā)表于 2025-3-24 05:13:12 | 只看該作者
Digitalisierung & NachhaltigkeitWe find necessary and suficient conditions for the pointwise convergence of the radial eigenfunctions expansion of the p-dimensional Laplace operator in a ball, where we prescribe either Dirichlet, Neumann or Robin conditions on the boundary.
16#
發(fā)表于 2025-3-24 07:00:13 | 只看該作者
17#
發(fā)表于 2025-3-24 11:18:30 | 只看該作者
18#
發(fā)表于 2025-3-24 17:12:07 | 只看該作者
Expansions in series of Legendre functionsThe Legendre functions.occurring in this paper are sometimes called modlfied Legendre functions, or Legendre functions on the cut. They are defined in [2, p.143, eq. (6)] as . for -1 < x < 1, where F is Gauss’s hypergeometric function and . and . are real or complex parameters. They satisfy the recurrence relation ..
19#
發(fā)表于 2025-3-24 23:05:46 | 只看該作者
20#
發(fā)表于 2025-3-25 02:25:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 02:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平邑县| 区。| 内黄县| 沈丘县| 周口市| 灵石县| 东兴市| 子长县| 收藏| 榆树市| 京山县| 临夏县| 兴隆县| 灯塔市| 噶尔县| 华蓥市| 皮山县| 武山县| 晋中市| 宜川县| 廉江市| 郎溪县| 南召县| 会昌县| 黔江区| 罗江县| 黄石市| 库车县| 荥阳市| 乌兰察布市| 芮城县| 安西县| 潢川县| 刚察县| 龙门县| 肃南| 兴安盟| 三明市| 全南县| 青铜峡市| 同心县|