找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Analysis as a Life; Dedicated to Heinric Sergei Rogosin,Ahmet Okay ?elebi Book 2019 Springer Nature Switzerland AG 2019 complex differentia

[復(fù)制鏈接]
樓主: 吞食
51#
發(fā)表于 2025-3-30 10:29:59 | 只看該作者
52#
發(fā)表于 2025-3-30 13:17:13 | 只看該作者
53#
發(fā)表于 2025-3-30 20:24:03 | 只看該作者
54#
發(fā)表于 2025-3-30 23:45:35 | 只看該作者
55#
發(fā)表于 2025-3-31 04:35:37 | 只看該作者
56#
發(fā)表于 2025-3-31 05:54:16 | 只看該作者
Time Dependent Solutions for the Biot Equations,que solution. More precisely, we consider the classical experimental method for measuring bone parameters, that is where a bone sample in a water bath and the bone sample interrogated with an ultrasound devise. This procedure leads to an inverse problem where the ultrasound signal is measured in var
57#
發(fā)表于 2025-3-31 10:54:00 | 只看該作者
Schwartz-Type Boundary Value Problems for Monogenic Functions in a Biharmonic Algebra,{.., ..} satisfying the conditions ., .. The algebra . is associated with the biharmonic equation, and considered problems have relations to the plane elasticity. We develop methods of its solving which are based on expressions of solutions by hypercomplex integrals analogous to the classic Schwartz
58#
發(fā)表于 2025-3-31 15:50:22 | 只看該作者
The String Equation for Some Rational Functions, bracket is applied to the conformal map itself together with its conformally reflected map the result is identically one. This is called the string equation, and it is closely connected to the governing equation, the Polubarinova-Galin equation, for the evolution of a Hele-Shaw blob of a viscous fl
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 05:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建水县| 固安县| 黑龙江省| 县级市| 青龙| 苍山县| 宜兰市| 辽阳县| 厦门市| 万载县| 瑞昌市| 阳谷县| 南靖县| 太湖县| 盐边县| 通城县| 大新县| 中宁县| 眉山市| 彰化市| 越西县| 伊吾县| 平远县| 什邡市| 静海县| 延寿县| 沙坪坝区| 漠河县| 桂平市| 栖霞市| 伊春市| 兴仁县| 板桥市| 金平| 霸州市| 桐城市| 嵊州市| 千阳县| 厦门市| 鹤岗市| 天镇县|