找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis as a Life; Dedicated to Heinric Sergei Rogosin,Ahmet Okay ?elebi Book 2019 Springer Nature Switzerland AG 2019 complex differentia

[復(fù)制鏈接]
樓主: 吞食
11#
發(fā)表于 2025-3-23 12:18:43 | 只看該作者
On Elliptic Systems of Two Equations on the Plane,ichlet problem is given. Explicit expressions for the generalized potentials of a double layer are derived and their applications to solution of the Dirichlet problem are described. The results are illustrated by the example of the Lamé system of plane elasticity theory.
12#
發(fā)表于 2025-3-23 16:46:06 | 只看該作者
2297-0215 ential equations, and especially to his prominent role as one of the creators and long-time leader of the International Society for Analysis, its Applications and Computation (ISAAC)..978-3-030-02650-9Series ISSN 2297-0215 Series E-ISSN 2297-024X
13#
發(fā)表于 2025-3-23 19:14:12 | 只看該作者
14#
發(fā)表于 2025-3-24 01:42:48 | 只看該作者
15#
發(fā)表于 2025-3-24 03:43:19 | 只看該作者
16#
發(fā)表于 2025-3-24 07:53:51 | 只看該作者
17#
發(fā)表于 2025-3-24 13:22:29 | 只看該作者
18#
發(fā)表于 2025-3-24 16:45:27 | 只看該作者
Gesch?ftsmodellmuster mit 3D-Druck für KMUth respect to the Laplacian in the complex Clifford algebra . for .?≥?3. Iterating the Green type kernel function, representation of the solution of the bi-Poisson equation with homogeneous Dirichlet condition is presented.
19#
發(fā)表于 2025-3-24 21:43:15 | 只看該作者
20#
發(fā)表于 2025-3-25 02:59:05 | 只看該作者
https://doi.org/10.1007/978-3-658-34563-1rive integral representations for functions in .. This unified method provides representations which are suitable to be employed in discussions for all linear boundary value problems. In the rest of the article we have improved some results obtained for Schwarz and Dirichlet type problems.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 05:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凌源市| 阿图什市| 三河市| 酒泉市| 宜黄县| 潜山县| 长治县| 陇南市| 广安市| 绥宁县| 金溪县| 灵武市| 鱼台县| 井陉县| 平顶山市| 开鲁县| 安化县| 黑山县| 黎平县| 金山区| 万盛区| 历史| 枝江市| 乌苏市| 德清县| 牟定县| 阜新市| 瓦房店市| 阳西县| 成都市| 石景山区| 定南县| 聊城市| 忻城县| 灵丘县| 霍林郭勒市| 抚松县| 桑植县| 湘潭市| 靖西县| 会泽县|