找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Topology in Nonlinear Differential Equations; A Tribute to Bernhar Djairo G Figueiredo,Jo?o Marcos do ó,Carlos Tomei Book 2014

[復制鏈接]
樓主: 和善
51#
發(fā)表于 2025-3-30 09:48:51 | 只看該作者
,Multiplicity of Positive Solutions for an Obstacle Problem in ?,In this paper we establish the existence of two positive solutions for the obstacle problem . where f is a continuous function verifying some technical conditions and . is the convex set given by . with . having nontrivial positive part with compact support in .
52#
發(fā)表于 2025-3-30 14:06:38 | 只看該作者
53#
發(fā)表于 2025-3-30 19:48:14 | 只看該作者
54#
發(fā)表于 2025-3-30 22:19:33 | 只看該作者
, Solutions in Some Borderline Cases of Elliptic Equations with Degenerate Coercivity,Abstract. We study a degenerate elliptic equation, proving existence results of distributional solutions in some borderline cases.
55#
發(fā)表于 2025-3-31 02:08:09 | 只看該作者
56#
發(fā)表于 2025-3-31 08:53:27 | 只看該作者
,Some Weighted Inequalities of Trudinger–Moser Type,We discuss some extensions of the Trudinger–Moser inequality in a special case of weighted Sobolev spaces
57#
發(fā)表于 2025-3-31 13:05:10 | 只看該作者
58#
發(fā)表于 2025-3-31 16:29:56 | 只看該作者
,On a Resonant Lane–Emden Problem,We study the asymptotic behavior, as q → p, of the positive solutions of the Lane–Emden problem . where . is a bounded and smooth domain . is the first eigenvalue of the p-Laplacian operator . We prove that any family of positive solutions of this problem converges in . to the function .
59#
發(fā)表于 2025-3-31 17:33:42 | 只看該作者
,A Note on the Existence of a Positive Solution for a Non-autonomous Schr?dinger–Poisson System,We consider the system . where 3 < p < 5 and the potentials . has finite limits as . By imposing some conditions on the decay rate of the potentials we obtain the existence of a ground state solution. In the proof we apply variational methods.
60#
發(fā)表于 2025-4-1 01:11:30 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 22:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
韩城市| 马关县| 宁德市| 玉田县| 阳谷县| 冕宁县| 白朗县| 石棉县| 上犹县| 静宁县| 海宁市| 凤山县| 苏尼特右旗| 庆阳市| 印江| 凤城市| 灵宝市| 南涧| 信宜市| 城市| 天等县| 道孚县| 清水河县| 兴隆县| 淮南市| 嘉祥县| 定边县| 宣武区| 东光县| 全椒县| 五莲县| 江门市| 望奎县| 云安县| 改则县| 罗平县| 米林县| 吉首市| 铁岭县| 佳木斯市| 湖州市|