找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Topology in Nonlinear Differential Equations; A Tribute to Bernhar Djairo G Figueiredo,Jo?o Marcos do ó,Carlos Tomei Book 2014

[復制鏈接]
樓主: 和善
11#
發(fā)表于 2025-3-23 12:37:59 | 只看該作者
1421-1750 of articles presented at the Workshop for Nonlinear Analysis held in Jo?o Pessoa, Brazil, in September 2012. The influence of Bernhard Ruf, to whom this volume is dedicated on the occasion of his 60th birthday, is perceptible throughout the collection by the choice of themes and techniques. The many
12#
發(fā)表于 2025-3-23 14:04:36 | 只看該作者
13#
發(fā)表于 2025-3-23 20:46:10 | 只看該作者
Analysis and Topology in Nonlinear Differential EquationsA Tribute to Bernhar
14#
發(fā)表于 2025-3-23 23:06:12 | 只看該作者
1421-1750 tical exponents, with spectral interactions of Ambrosetti-Prodi type. Also treated are analytic aspects as well as applications such as diffusion problems in mathematical genetics and finance and evolution equations related to electromechanical devices.978-3-319-38032-2978-3-319-04214-5Series ISSN 1421-1750 Series E-ISSN 2374-0280
15#
發(fā)表于 2025-3-24 05:13:47 | 只看該作者
Djairo G Figueiredo,Jo?o Marcos do ó,Carlos TomeiGrowing vital area of mathematics.Anniversary volume dedicated to Bernhard Ruf.Includes supplementary material:
16#
發(fā)表于 2025-3-24 06:59:23 | 只看該作者
17#
發(fā)表于 2025-3-24 13:40:46 | 只看該作者
18#
發(fā)表于 2025-3-24 18:25:57 | 只看該作者
19#
發(fā)表于 2025-3-24 21:39:52 | 只看該作者
https://doi.org/10.1007/978-3-662-06736-9tional problems. With this purpose, we prove a slice theorem for continuous affine actions of a (finite-dimensional) Lie group on Banach manifolds. As an application, we discuss equivariant bifurcation of constant mean curvature hypersurfaces, providing a few concrete examples and counter-examples.
20#
發(fā)表于 2025-3-25 00:13:10 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-22 22:05
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
湄潭县| 嘉祥县| 马公市| 陵川县| 常熟市| 吴江市| 莲花县| 松溪县| 峡江县| 离岛区| 昌都县| 中江县| 襄城县| 汕尾市| 信宜市| 德昌县| 恩平市| 沂源县| 深水埗区| 保山市| 南丰县| 商洛市| 莆田市| 蓝田县| 福清市| 兴山县| 施甸县| 花垣县| 大港区| 宜州市| 嘉峪关市| 黄山市| 邵阳市| 河池市| 衡山县| 濮阳市| 治县。| 潮安县| 成都市| 雷山县| 三河市|