找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Quantum Groups; Lars Tuset Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer

[復制鏈接]
樓主: Deleterious
51#
發(fā)表于 2025-3-30 11:50:44 | 只看該作者
52#
發(fā)表于 2025-3-30 14:33:11 | 只看該作者
53#
發(fā)表于 2025-3-30 17:51:33 | 只看該作者
Types of von Neumann Algebras,d, then given by comparing representatives, and it is a partial semigroup under addition of representatives whenever these are mutually orthogonal. The partial order on .(.) becomes a total order when . is a factor.
54#
發(fā)表于 2025-3-30 21:16:22 | 只看該作者
55#
發(fā)表于 2025-3-31 04:38:33 | 只看該作者
Textbook 2022of natural products such as cocycle bicrossed products, quantum doubles and doublecrossed products. Induced corepresentations, Galois objects and deformations of coactions by cocycles are also treated. Each section is followed by a generous supply of exercises. To complete the book, an appendix is p
56#
發(fā)表于 2025-3-31 07:05:37 | 只看該作者
57#
發(fā)表于 2025-3-31 09:29:18 | 只看該作者
Operators on Hilbert Spaces,roducts. The fundamental example of a Hilbert space is the .-space of the circle. A function, or vector, here can be thought of as a light signal, which through its Fourier series, is decomposed into orthogonal directions, each corresponding to a specific color identified with a certain frequency.
58#
發(fā)表于 2025-3-31 15:40:39 | 只看該作者
Spectral Theory, series that converges absolutely on a disc with radius larger than ∥.∥. Replacing the variable in the power series by . we evidently get a convergent series in the Banach algebra .(.?) producing an operator denoted .(.). The map .?.(.) is called the holomorphic functional calculus at .. This way co
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 12:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
晋宁县| 肇州县| 固阳县| 五原县| 明溪县| 府谷县| 三门县| 唐河县| 商洛市| 天气| 库伦旗| 康马县| 渭南市| 喀什市| 元阳县| 三穗县| 大邑县| 新安县| 吉首市| 大石桥市| 正镶白旗| 香河县| 洛川县| 临清市| 辽阳市| 吉木萨尔县| 无为县| 洞头县| 双辽市| 隆德县| 资源县| 秭归县| 晋州市| 芒康县| 莆田市| 托克逊县| 襄樊市| 蒙自县| 萨迦县| 根河市| 盖州市|