找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Quantum Groups; Lars Tuset Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer

[復制鏈接]
樓主: Deleterious
21#
發(fā)表于 2025-3-25 05:24:41 | 只看該作者
22#
發(fā)表于 2025-3-25 08:32:13 | 只看該作者
23#
發(fā)表于 2025-3-25 14:24:48 | 只看該作者
Digital VLSI Design with VerilogThe classical notion of twisted actions of groups on algebras can be rephrased as so called cocycle coactions of locally compact quantum groups on von Neumann algebras generalizing both twisted actions and coactions.
24#
發(fā)表于 2025-3-25 18:27:02 | 只看該作者
Introduction,Quantum groups disclosed themselves to us as holders of .-matrices via quantum inverse scattering methods.
25#
發(fā)表于 2025-3-25 21:55:49 | 只看該作者
Banach Spaces,This chapter deals with what could be called geometric functional analysis. Results from plane geometry are generalized to infinite dimensional vector spaces, including function spaces, yielding powerful, general results with a wide range of applications from within optimization theory to physics.
26#
發(fā)表于 2025-3-26 02:29:59 | 只看該作者
Tensor Products,Tensor products is the study of multilinear maps by linear maps, meaning that the multilinear maps from a space factor uniquely through a linear map defined on another vector space called the tensor product of the vector spaces occurring as direct products in the domain of the multilinear maps.
27#
發(fā)表于 2025-3-26 06:43:47 | 只看該作者
Spectra and Type , Factors,In this section we study some useful invariants especially of type . von Neumann algebras bringing our classification program to a certain level of completion. From the outset these invariants are associated with dynamical systems.
28#
發(fā)表于 2025-3-26 08:52:56 | 只看該作者
Quantum Groups and Duality,The basic notion in this chapter and the second half of the book, is that of a locally compact quantum group
29#
發(fā)表于 2025-3-26 14:11:14 | 只看該作者
30#
發(fā)表于 2025-3-26 20:00:03 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 12:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
云梦县| 临漳县| 崇仁县| 镶黄旗| 孝昌县| 茂名市| 东源县| 翁牛特旗| 黄龙县| 竹山县| 安多县| 江津市| 婺源县| 南郑县| 鄂尔多斯市| 疏勒县| 台南县| 光山县| 从化市| 鄂伦春自治旗| 宜章县| 徐汇区| 珠海市| 左贡县| 霍林郭勒市| 汕尾市| 容城县| 潢川县| 竹北市| 旌德县| 江孜县| 三门峡市| 沾化县| 开江县| 乌鲁木齐市| 汝州市| 石阡县| 伊川县| 米泉市| 山阴县| 清新县|