找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Quantum Groups; Lars Tuset Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer

[復制鏈接]
樓主: Deleterious
21#
發(fā)表于 2025-3-25 05:24:41 | 只看該作者
22#
發(fā)表于 2025-3-25 08:32:13 | 只看該作者
23#
發(fā)表于 2025-3-25 14:24:48 | 只看該作者
Digital VLSI Design with VerilogThe classical notion of twisted actions of groups on algebras can be rephrased as so called cocycle coactions of locally compact quantum groups on von Neumann algebras generalizing both twisted actions and coactions.
24#
發(fā)表于 2025-3-25 18:27:02 | 只看該作者
Introduction,Quantum groups disclosed themselves to us as holders of .-matrices via quantum inverse scattering methods.
25#
發(fā)表于 2025-3-25 21:55:49 | 只看該作者
Banach Spaces,This chapter deals with what could be called geometric functional analysis. Results from plane geometry are generalized to infinite dimensional vector spaces, including function spaces, yielding powerful, general results with a wide range of applications from within optimization theory to physics.
26#
發(fā)表于 2025-3-26 02:29:59 | 只看該作者
Tensor Products,Tensor products is the study of multilinear maps by linear maps, meaning that the multilinear maps from a space factor uniquely through a linear map defined on another vector space called the tensor product of the vector spaces occurring as direct products in the domain of the multilinear maps.
27#
發(fā)表于 2025-3-26 06:43:47 | 只看該作者
Spectra and Type , Factors,In this section we study some useful invariants especially of type . von Neumann algebras bringing our classification program to a certain level of completion. From the outset these invariants are associated with dynamical systems.
28#
發(fā)表于 2025-3-26 08:52:56 | 只看該作者
Quantum Groups and Duality,The basic notion in this chapter and the second half of the book, is that of a locally compact quantum group
29#
發(fā)表于 2025-3-26 14:11:14 | 只看該作者
30#
發(fā)表于 2025-3-26 20:00:03 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 12:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
获嘉县| 山东| 门源| 祁连县| 洪湖市| 长乐市| 博客| 长葛市| 桐乡市| 成安县| 江达县| 甘谷县| 郓城县| 凉城县| 子洲县| 桓台县| 静海县| 湖北省| 宁津县| 离岛区| 东阿县| 扶风县| 五大连池市| 许昌市| 武定县| 延边| 徐水县| 龙口市| 绵竹市| 玉屏| 霍林郭勒市| 蒙阴县| 和田市| 廊坊市| 扬中市| 桓台县| 昭通市| 巴楚县| 额济纳旗| 全南县| 平江县|