找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Geometry; MIMS-GGTM, Tunis, Tu Ali Baklouti,Aziz El Kacimi,Nordine Mir Conference proceedings 2015 Springer International Publ

[復制鏈接]
樓主: Intermediary
31#
發(fā)表于 2025-3-26 23:11:00 | 只看該作者
32#
發(fā)表于 2025-3-27 01:06:39 | 只看該作者
33#
發(fā)表于 2025-3-27 07:57:35 | 只看該作者
Compactness of the ,-Neumann Operator on the Intersection of Two Domains,Assume that . and . are two smooth bounded pseudoconvex domains in . that intersect (real) transversely, and that . is a domain (i.e. is connected). If the .-Neumann operators on . and on . are compact, then so is the .-Neumann operator on .. The corresponding result holds for the .-Neumann operators on .-forms on domains in ..
34#
發(fā)表于 2025-3-27 10:07:58 | 只看該作者
35#
發(fā)表于 2025-3-27 14:09:03 | 只看該作者
36#
發(fā)表于 2025-3-27 21:01:08 | 只看該作者
Analyticity and Smoothness for a Class of First Order Nonlinear PDEs,We study the microlocal analyticity and smoothness for the solutions of a class of first order complex nonlinear partial differential equations of the form ..
37#
發(fā)表于 2025-3-27 21:56:29 | 只看該作者
Submanifolds of Hermitian Symmetric Spaces,We study the problem of non-relativity for a complex Euclidean space and a bounded symmetric domain equipped with their canonical metrics. In particular, we answer a question raised by Di Scala. This paper is dedicated to the memory of Salah Baouendi, a great teacher and a close friend to many of us.
38#
發(fā)表于 2025-3-28 02:18:41 | 只看該作者
Ali Baklouti,Aziz El Kacimi,Nordine MirCovers important topics of contemporary interest.Mainly focused on the most recent developments in analysis and geometry.Provides a valuable contribution to the mathematical literature.Includes supple
39#
發(fā)表于 2025-3-28 09:45:53 | 只看該作者
40#
發(fā)表于 2025-3-28 11:47:54 | 只看該作者
https://doi.org/10.1007/978-3-319-17443-3Algebraic geometry and analysis; CR-Geometry; Complex vector fields; Dirchilet Eigenfunctions; Holomorph
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 02:55
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
启东市| 德清县| 平潭县| 自贡市| 宁强县| 嘉义县| 北京市| 陆川县| 双流县| 普洱| 宜兰县| 江安县| 土默特右旗| 内江市| 三河市| 灵山县| 阿拉善盟| 铅山县| 潮安县| 普格县| 吴忠市| 康平县| 神农架林区| 叶城县| 黄骅市| 周口市| 南江县| 集安市| 古田县| 德令哈市| 屯留县| 阿拉善盟| 苍山县| 平果县| 安丘市| 余干县| 辽宁省| 巴马| 黄陵县| 兴仁县| 攀枝花市|