找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Geometry; MIMS-GGTM, Tunis, Tu Ali Baklouti,Aziz El Kacimi,Nordine Mir Conference proceedings 2015 Springer International Publ

[復制鏈接]
樓主: Intermediary
31#
發(fā)表于 2025-3-26 23:11:00 | 只看該作者
32#
發(fā)表于 2025-3-27 01:06:39 | 只看該作者
33#
發(fā)表于 2025-3-27 07:57:35 | 只看該作者
Compactness of the ,-Neumann Operator on the Intersection of Two Domains,Assume that . and . are two smooth bounded pseudoconvex domains in . that intersect (real) transversely, and that . is a domain (i.e. is connected). If the .-Neumann operators on . and on . are compact, then so is the .-Neumann operator on .. The corresponding result holds for the .-Neumann operators on .-forms on domains in ..
34#
發(fā)表于 2025-3-27 10:07:58 | 只看該作者
35#
發(fā)表于 2025-3-27 14:09:03 | 只看該作者
36#
發(fā)表于 2025-3-27 21:01:08 | 只看該作者
Analyticity and Smoothness for a Class of First Order Nonlinear PDEs,We study the microlocal analyticity and smoothness for the solutions of a class of first order complex nonlinear partial differential equations of the form ..
37#
發(fā)表于 2025-3-27 21:56:29 | 只看該作者
Submanifolds of Hermitian Symmetric Spaces,We study the problem of non-relativity for a complex Euclidean space and a bounded symmetric domain equipped with their canonical metrics. In particular, we answer a question raised by Di Scala. This paper is dedicated to the memory of Salah Baouendi, a great teacher and a close friend to many of us.
38#
發(fā)表于 2025-3-28 02:18:41 | 只看該作者
Ali Baklouti,Aziz El Kacimi,Nordine MirCovers important topics of contemporary interest.Mainly focused on the most recent developments in analysis and geometry.Provides a valuable contribution to the mathematical literature.Includes supple
39#
發(fā)表于 2025-3-28 09:45:53 | 只看該作者
40#
發(fā)表于 2025-3-28 11:47:54 | 只看該作者
https://doi.org/10.1007/978-3-319-17443-3Algebraic geometry and analysis; CR-Geometry; Complex vector fields; Dirchilet Eigenfunctions; Holomorph
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 02:55
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
鄂伦春自治旗| 台江县| 百色市| 郸城县| 若尔盖县| 安宁市| 凌云县| 河曲县| 久治县| 海丰县| 亳州市| 容城县| 建水县| 灵川县| 剑河县| 酒泉市| 浦江县| 瑞安市| 当阳市| 孝义市| 法库县| 太仓市| 宜春市| 梁山县| 贵州省| 昌黎县| 含山县| 寿宁县| 广水市| 景德镇市| 临邑县| 九江县| 张家港市| 绥化市| 葫芦岛市| 汉沽区| 普兰县| 广安市| 京山县| 广西| 剑川县|