找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Analysis and Geometry; MIMS-GGTM, Tunis, Tu Ali Baklouti,Aziz El Kacimi,Nordine Mir Conference proceedings 2015 Springer International Publ

[復(fù)制鏈接]
查看: 39630|回復(fù): 58
樓主
發(fā)表于 2025-3-21 16:07:15 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Analysis and Geometry
期刊簡稱MIMS-GGTM, Tunis, Tu
影響因子2023Ali Baklouti,Aziz El Kacimi,Nordine Mir
視頻videohttp://file.papertrans.cn/157/156217/156217.mp4
發(fā)行地址Covers important topics of contemporary interest.Mainly focused on the most recent developments in analysis and geometry.Provides a valuable contribution to the mathematical literature.Includes supple
學(xué)科分類Springer Proceedings in Mathematics & Statistics
圖書封面Titlebook: Analysis and Geometry; MIMS-GGTM, Tunis, Tu Ali Baklouti,Aziz El Kacimi,Nordine Mir Conference proceedings 2015 Springer International Publ
影響因子.This book includes selected papers presented at the MIMS (Mediterranean Institute for the Mathematical Sciences) - GGTM (Geometry and Topology Grouping for the Maghreb) conference, held in memory of Mohammed Salah Baouendi, a most renowned figure in the field of several complex variables, who passed away in 2011. All research articles were written by leading experts, some of whom are prize winners in the fields of complex geometry, algebraic geometry and analysis. The book offers a valuable resource for all researchers interested in recent developments in analysis and geometry..
Pindex Conference proceedings 2015
The information of publication is updating

書目名稱Analysis and Geometry影響因子(影響力)




書目名稱Analysis and Geometry影響因子(影響力)學(xué)科排名




書目名稱Analysis and Geometry網(wǎng)絡(luò)公開度




書目名稱Analysis and Geometry網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Analysis and Geometry被引頻次




書目名稱Analysis and Geometry被引頻次學(xué)科排名




書目名稱Analysis and Geometry年度引用




書目名稱Analysis and Geometry年度引用學(xué)科排名




書目名稱Analysis and Geometry讀者反饋




書目名稱Analysis and Geometry讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:50:40 | 只看該作者
2194-1009 ize winners in the fields of complex geometry, algebraic geometry and analysis. The book offers a valuable resource for all researchers interested in recent developments in analysis and geometry..978-3-319-36885-6978-3-319-17443-3Series ISSN 2194-1009 Series E-ISSN 2194-1017
板凳
發(fā)表于 2025-3-22 01:15:45 | 只看該作者
地板
發(fā)表于 2025-3-22 06:18:43 | 只看該作者
Quasicrystals and Control Theory,rounded on a theorem on trigonometric sums proved by Arne Beurling. This will be our first example. The second example goes the other way around. A problem on trigonometric sums is solved using tools from control theory. Frontiers are erased as Baouendi wished.
5#
發(fā)表于 2025-3-22 09:01:20 | 只看該作者
6#
發(fā)表于 2025-3-22 14:21:00 | 只看該作者
Digital Receiver/Exciter Design,tisfies a strong general type condition that is related to a certain jet semistability property of the tangent bundle?.. We then give a sufficient criterion for the Kobayashi hyperbolicity of an arbitrary directed variety (.,?.).
7#
發(fā)表于 2025-3-22 18:27:28 | 只看該作者
https://doi.org/10.1007/978-1-4471-5267-5 Hartogs triangle that . does not have closed range for (0, 1)-forms smooth up?to the boundary, even though it has closed range in the weak . sense. An example is given to show that . might not have closed range in . on a Stein domain in complex manifold.
8#
發(fā)表于 2025-3-22 23:15:11 | 只看該作者
Towards the Green-Griffiths-Lang Conjecture,tisfies a strong general type condition that is related to a certain jet semistability property of the tangent bundle?.. We then give a sufficient criterion for the Kobayashi hyperbolicity of an arbitrary directed variety (.,?.).
9#
發(fā)表于 2025-3-23 03:31:01 | 只看該作者
Non-closed Range Property for the Cauchy-Riemann Operator, Hartogs triangle that . does not have closed range for (0, 1)-forms smooth up?to the boundary, even though it has closed range in the weak . sense. An example is given to show that . might not have closed range in . on a Stein domain in complex manifold.
10#
發(fā)表于 2025-3-23 06:39:28 | 只看該作者
Conference proceedings 2015d away in 2011. All research articles were written by leading experts, some of whom are prize winners in the fields of complex geometry, algebraic geometry and analysis. The book offers a valuable resource for all researchers interested in recent developments in analysis and geometry..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新干县| 开化县| 大埔区| 亳州市| 乌拉特前旗| 大悟县| 宁晋县| 漳平市| 巴东县| 普兰县| 徐汇区| 大丰市| 潜江市| 鹤壁市| 永年县| 张家口市| 宜州市| 青浦区| 宿松县| 广西| 十堰市| 信阳市| 灵璧县| 富川| 东源县| 霞浦县| 昌都县| 洞口县| 繁昌县| 长武县| 青浦区| 南丹县| 台南县| 钟祥市| 福泉市| 太湖县| 筠连县| 乌拉特前旗| 邯郸县| 长岭县| 陵水|