找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Outline of Set Theory; James M. Henle Book 1986 Springer-Verlag New York Inc. 1986 Finite.calculus.cardinals.mathematics.ordinal.set th

[復(fù)制鏈接]
樓主: Body-Mass-Index
21#
發(fā)表于 2025-3-25 05:23:03 | 只看該作者
Aufrüstung und KriegsvorbereitungThe object of this chapter is to define a set to represent the numbers 0, 1, 2, .... To be complete, we must also show how to add and multiply these numbers and prove all the usual laws: commutative, associative, etc. The most important idea contained in our construction is that of mathematical induction.
22#
發(fā)表于 2025-3-25 09:17:43 | 只看該作者
23#
發(fā)表于 2025-3-25 12:52:52 | 只看該作者
https://doi.org/10.1007/978-3-322-80854-7Our next goal is to construct the rational numbers. The method is very much like that of the previous chapter.
24#
發(fā)表于 2025-3-25 16:14:43 | 只看該作者
25#
發(fā)表于 2025-3-25 20:26:50 | 只看該作者
Die Aufl?sung der naturalistischen ?sthetikWe wish to extend ?, our set of counting numbers, to a larger class of numbers we can use to count infinite sets. These will be our first type of infinite number, and they will be used to measure the “l(fā)engths” of large sets.
26#
發(fā)表于 2025-3-26 00:48:46 | 只看該作者
https://doi.org/10.1007/978-3-658-27463-4We develop in this chapter a second set of infinite numbers to measure the . (as opposed to the . of infinite sets.
27#
發(fā)表于 2025-3-26 07:17:48 | 只看該作者
28#
發(fā)表于 2025-3-26 11:26:40 | 只看該作者
René K?nig Schriften. Ausgabe letzter HandWe prove here Theorem 7.10 which offers three equivalent forms of the Axiom of Choice. We then use AC to construct a system of numbers called the Hyperreal numbers (??). This system extends ? as ? extended ? and ? extended ?. ?? contains both infinite numbers and infinitesimals.
29#
發(fā)表于 2025-3-26 13:27:00 | 只看該作者
https://doi.org/10.1007/978-3-322-99013-6 # 13. 3.1. As you try to prove transitivity you will realize that you are missing an important fact about ?, a cancellation law:
30#
發(fā)表于 2025-3-26 20:44:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 16:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西安市| 绩溪县| 旬阳县| 浙江省| 雷波县| 扶沟县| 大名县| 华安县| 灌云县| 武乡县| 正镶白旗| 嘉祥县| 上蔡县| 奈曼旗| 惠水县| 吴川市| 封丘县| 苏尼特左旗| 古蔺县| 南平市| 理塘县| 新泰市| 兴业县| 鸡西市| 嘉峪关市| 西贡区| 新干县| 乳源| 临邑县| 新营市| 汶川县| 大宁县| 黄陵县| 晋州市| 宜昌市| 长沙县| 黄梅县| 赤壁市| 舒城县| 万州区| 库尔勒市|