找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Outline of Set Theory; James M. Henle Book 1986 Springer-Verlag New York Inc. 1986 Finite.calculus.cardinals.mathematics.ordinal.set th

[復(fù)制鏈接]
樓主: Body-Mass-Index
21#
發(fā)表于 2025-3-25 05:23:03 | 只看該作者
Aufrüstung und KriegsvorbereitungThe object of this chapter is to define a set to represent the numbers 0, 1, 2, .... To be complete, we must also show how to add and multiply these numbers and prove all the usual laws: commutative, associative, etc. The most important idea contained in our construction is that of mathematical induction.
22#
發(fā)表于 2025-3-25 09:17:43 | 只看該作者
23#
發(fā)表于 2025-3-25 12:52:52 | 只看該作者
https://doi.org/10.1007/978-3-322-80854-7Our next goal is to construct the rational numbers. The method is very much like that of the previous chapter.
24#
發(fā)表于 2025-3-25 16:14:43 | 只看該作者
25#
發(fā)表于 2025-3-25 20:26:50 | 只看該作者
Die Aufl?sung der naturalistischen ?sthetikWe wish to extend ?, our set of counting numbers, to a larger class of numbers we can use to count infinite sets. These will be our first type of infinite number, and they will be used to measure the “l(fā)engths” of large sets.
26#
發(fā)表于 2025-3-26 00:48:46 | 只看該作者
https://doi.org/10.1007/978-3-658-27463-4We develop in this chapter a second set of infinite numbers to measure the . (as opposed to the . of infinite sets.
27#
發(fā)表于 2025-3-26 07:17:48 | 只看該作者
28#
發(fā)表于 2025-3-26 11:26:40 | 只看該作者
René K?nig Schriften. Ausgabe letzter HandWe prove here Theorem 7.10 which offers three equivalent forms of the Axiom of Choice. We then use AC to construct a system of numbers called the Hyperreal numbers (??). This system extends ? as ? extended ? and ? extended ?. ?? contains both infinite numbers and infinitesimals.
29#
發(fā)表于 2025-3-26 13:27:00 | 只看該作者
https://doi.org/10.1007/978-3-322-99013-6 # 13. 3.1. As you try to prove transitivity you will realize that you are missing an important fact about ?, a cancellation law:
30#
發(fā)表于 2025-3-26 20:44:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 16:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉定区| 湟中县| 中牟县| 芜湖县| 吉隆县| 无棣县| 万荣县| 梅州市| 建水县| 桦川县| 安吉县| 潜山县| 宁陵县| 化德县| 鞍山市| 南皮县| 乌鲁木齐县| 岑巩县| 遂溪县| 辰溪县| 象山县| 大宁县| 沙田区| 高淳县| 大竹县| 墨竹工卡县| 隆安县| 伊通| 临沧市| 霸州市| 即墨市| 珲春市| 浪卡子县| 同江市| 平原县| 当雄县| 门头沟区| 阳谷县| 上饶县| 苍溪县| 南投市|