找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Outline of Set Theory; James M. Henle Book 1986 Springer-Verlag New York Inc. 1986 Finite.calculus.cardinals.mathematics.ordinal.set th

[復(fù)制鏈接]
樓主: Body-Mass-Index
31#
發(fā)表于 2025-3-26 21:29:08 | 只看該作者
The Natural NumbersThe object of this chapter is to define a set to represent the numbers 0, 1, 2, .... To be complete, we must also show how to add and multiply these numbers and prove all the usual laws: commutative, associative, etc. The most important idea contained in our construction is that of mathematical induction.
32#
發(fā)表于 2025-3-27 03:08:10 | 只看該作者
The IntegersIn this chapter we will construct a set to represent the positive and negative integers. As before, we will define addition and multiplication. In addition to the properties proved for ? , we will now have additive inverses. The key idea in our construction is the use of equivalence classes.
33#
發(fā)表于 2025-3-27 05:23:53 | 只看該作者
The RationalsOur next goal is to construct the rational numbers. The method is very much like that of the previous chapter.
34#
發(fā)表于 2025-3-27 09:51:41 | 只看該作者
The Real NumbersWe complete our construction of the standard number systems with Dedekind’s approach to the real numbers. For various reasons, there is a lot more work involved in this task, so we will limit ourselves to the definition of ?, +. and 0., and some examination of the difficulties of proceeding further.
35#
發(fā)表于 2025-3-27 17:32:49 | 只看該作者
The OrdinalsWe wish to extend ?, our set of counting numbers, to a larger class of numbers we can use to count infinite sets. These will be our first type of infinite number, and they will be used to measure the “l(fā)engths” of large sets.
36#
發(fā)表于 2025-3-27 20:44:55 | 只看該作者
37#
發(fā)表于 2025-3-27 22:21:43 | 只看該作者
The UniverseWe now explore some pure set theory, examining the structure of the universe of sets. A crucial concept will be that of a set which in itself is a universe of sets, that is, all the axioms of ZF are true about the members of this set.
38#
發(fā)表于 2025-3-28 03:45:22 | 只看該作者
Choice and InfinitesimalsWe prove here Theorem 7.10 which offers three equivalent forms of the Axiom of Choice. We then use AC to construct a system of numbers called the Hyperreal numbers (??). This system extends ? as ? extended ? and ? extended ?. ?? contains both infinite numbers and infinitesimals.
39#
發(fā)表于 2025-3-28 07:29:15 | 只看該作者
The Integers # 13. 3.1. As you try to prove transitivity you will realize that you are missing an important fact about ?, a cancellation law:
40#
發(fā)表于 2025-3-28 13:13:08 | 只看該作者
The Ordinals # 24. We meet here yet another of the many faces of induction. Under ordinary circumstances the following principles (on any linearly ordered set) are the same:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 19:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
景泰县| 印江| 菏泽市| 防城港市| 岚皋县| 甘孜县| 高平市| 贵德县| 承德县| 山西省| 武强县| 扎鲁特旗| 宜城市| 孟津县| 沈阳市| 任丘市| 大理市| 同心县| 晋宁县| 延川县| 巧家县| 额济纳旗| 漯河市| 台安县| 忻城县| 清徐县| 淮阳县| 边坝县| 鹤山市| 清水河县| 九龙县| 石河子市| 渑池县| 威信县| 台中县| 建湖县| 工布江达县| 池州市| 新蔡县| 卢龙县| 綦江县|