找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Invitation to Quantum Cohomology; Kontsevich‘s Formula Joachim Kock,Israel Vainsencher Textbook 2007 Birkh?user Boston 2007 Grad.algebra

[復制鏈接]
樓主: injurious
21#
發(fā)表于 2025-3-25 05:26:28 | 只看該作者
Prologue: Warming Up with Cross Ratios, and the Definition of Moduli Space,Throughout this book we work over the field of complex numbers. When we speak of schemes we mean schemes of finite type over Spec ?.
22#
發(fā)表于 2025-3-25 09:15:24 | 只看該作者
23#
發(fā)表于 2025-3-25 12:22:33 | 只看該作者
24#
發(fā)表于 2025-3-25 15:52:54 | 只看該作者
,Gromov—Witten Invariants,The intersection numbers resulting from an ideal transverse situation as in Proposition 3.4.3. are the (genus-0) .. In Section 4.2 we establish the basic properties of Gromov-Witten invariants, and in 4.3 and 4.4 we describe recursive relations among them, allowing for their computation.
25#
發(fā)表于 2025-3-25 22:51:56 | 只看該作者
26#
發(fā)表于 2025-3-26 04:08:50 | 只看該作者
Stable ,-pointed Curves,nherited from ., the important Deligne-Mumford-Knudsen moduli space of stable .-pointed rational curves which are the subject of this first chapter. We shall not go into the detail of the construction of ., but content ourselves with the cases .≤5. The combinatorics of the boundary deserves a carefu
27#
發(fā)表于 2025-3-26 07:45:03 | 只看該作者
Quantum Cohomology,define a . on .. Kontsevich’s formula and the other recursions we found in Chapter 4, are then interpreted as partial differential equations for the Gromov-Witten potential. The striking fact about all these equations is that they amount to the associativity of the quantum product! In particular, Ko
28#
發(fā)表于 2025-3-26 09:46:31 | 只看該作者
29#
發(fā)表于 2025-3-26 14:29:38 | 只看該作者
30#
發(fā)表于 2025-3-26 16:48:36 | 只看該作者
Conference proceedings 2016and Intelligent RecognitionSystems (SIRS-2015), December 16-19, 2015, Trivandrum, India. The programcommittee received 175 submissions. Each paper was peer reviewed by at leastthree or more independent referees of the program committee and the 59 paperswere finally selected. The papers offer stimula
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 02:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
阿拉善左旗| 尖扎县| 仪陇县| 泾阳县| 石林| 加查县| 乐安县| 安阳县| 吉隆县| 井冈山市| 深圳市| 德兴市| 彰化县| 广安市| 鄢陵县| 高平市| 外汇| 寻乌县| 屏东市| 太康县| 满城县| 神农架林区| 渝北区| 彩票| 禹州市| 珠海市| 乃东县| 扎赉特旗| 平顶山市| 上饶市| 金溪县| 依兰县| 舒城县| 革吉县| 隆尧县| 乌海市| 台州市| 南漳县| 郴州市| 札达县| 吉木乃县|