找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Invitation to Quantum Cohomology; Kontsevich‘s Formula Joachim Kock,Israel Vainsencher Textbook 2007 Birkh?user Boston 2007 Grad.algebra

[復制鏈接]
查看: 53411|回復: 38
樓主
發(fā)表于 2025-3-21 16:07:38 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱An Invitation to Quantum Cohomology
期刊簡稱Kontsevich‘s Formula
影響因子2023Joachim Kock,Israel Vainsencher
視頻videohttp://file.papertrans.cn/156/155646/155646.mp4
發(fā)行地址Elementary introduction to stable maps and quantum cohomology presents the problem of counting rational plane curves.Viewpoint is mostly that of enumerative geometry.Emphasis is on examples, heuristic
學科分類Progress in Mathematics
圖書封面Titlebook: An Invitation to Quantum Cohomology; Kontsevich‘s Formula Joachim Kock,Israel Vainsencher Textbook 2007 Birkh?user Boston 2007 Grad.algebra
影響因子This book is an elementary introduction to some ideas and techniques that have revolutionized enumerative geometry: stable maps and quantum cohomology. A striking demonstration of the potential of these techniques is provided by Kont- vich‘s famous formula, which solves a long-standing question: How many plane rational curves of degree d pass through 3d — 1 given points in general position? The formula expresses the number of curves for a given degree in terms of the numbers for lower degrees. A single initial datum is required for the recursion, namely, the case d = I, which simply amounts to the fact that through two points there is but one line. Assuming the existence of the Kontsevich spaces of stable maps and a few of their basic properties, we present a complete proof of the formula, and use the formula as a red thread in our Invitation to Quantum Cohomology. For more information about the mathematical content, see the Introduction. The canonical reference for this topic is the already classical Notes on Stable Maps and Quantum Cohomology by Fulton and Pandharipande [29], cited henceforth as FP-NOTES. We have traded greater generality for the sake of introducing some simplifi
Pindex Textbook 2007
The information of publication is updating

書目名稱An Invitation to Quantum Cohomology影響因子(影響力)




書目名稱An Invitation to Quantum Cohomology影響因子(影響力)學科排名




書目名稱An Invitation to Quantum Cohomology網(wǎng)絡(luò)公開度




書目名稱An Invitation to Quantum Cohomology網(wǎng)絡(luò)公開度學科排名




書目名稱An Invitation to Quantum Cohomology被引頻次




書目名稱An Invitation to Quantum Cohomology被引頻次學科排名




書目名稱An Invitation to Quantum Cohomology年度引用




書目名稱An Invitation to Quantum Cohomology年度引用學科排名




書目名稱An Invitation to Quantum Cohomology讀者反饋




書目名稱An Invitation to Quantum Cohomology讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:21:57 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:06:20 | 只看該作者
R. Beer,G. C. Loeschcke,G. Fank,Ch. Hechte shall not go into the detail of the construction of ., but content ourselves with the cases .≤5. The combinatorics of the boundary deserves a careful description. The principal reference for this chapter is Knudsen [51]; see also Keel [47].
地板
發(fā)表于 2025-3-22 06:26:08 | 只看該作者
F. Hoffmeister,E. Grünvogel,W. Wirthromov-Witten potential. The striking fact about all these equations is that they amount to the associativity of the quantum product! In particular, Kontsevich’s formula is equivalent to associativity of the quantum product of ..
5#
發(fā)表于 2025-3-22 09:00:47 | 只看該作者
6#
發(fā)表于 2025-3-22 13:27:57 | 只看該作者
Quantum Cohomology,romov-Witten potential. The striking fact about all these equations is that they amount to the associativity of the quantum product! In particular, Kontsevich’s formula is equivalent to associativity of the quantum product of ..
7#
發(fā)表于 2025-3-22 20:14:45 | 只看該作者
An Invitation to Quantum Cohomology978-0-8176-4495-6Series ISSN 0743-1643 Series E-ISSN 2296-505X
8#
發(fā)表于 2025-3-23 00:47:26 | 只看該作者
9#
發(fā)表于 2025-3-23 03:28:04 | 只看該作者
https://doi.org/10.1007/978-0-8176-4495-6Grad; algebraic geometry; cohomology; homology; moduli space
10#
發(fā)表于 2025-3-23 08:52:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 00:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
砚山县| 龙胜| 永吉县| 毕节市| 郓城县| 图木舒克市| 固始县| 北宁市| 沛县| 砚山县| 曲阳县| 澳门| 锡林郭勒盟| 云霄县| 泰州市| 翁牛特旗| 顺义区| 姚安县| 汤阴县| 吉林市| 永平县| 新巴尔虎右旗| 牟定县| 固镇县| 富平县| 金溪县| 云林县| 沁阳市| 高雄市| 南康市| 盐池县| 嵊州市| 盐亭县| 从江县| 威宁| 潞城市| 鹤岗市| 徐州市| 浠水县| 平武县| 沐川县|