找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Invitation to Algebraic Geometry; Karen E. Smith,Lauri Kahanp??,William Traves Textbook 2000 Springer Science+Business Media New York 2

[復制鏈接]
查看: 51863|回復: 42
樓主
發(fā)表于 2025-3-21 17:26:24 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱An Invitation to Algebraic Geometry
影響因子2023Karen E. Smith,Lauri Kahanp??,William Traves
視頻videohttp://file.papertrans.cn/156/155631/155631.mp4
學科分類Universitext
圖書封面Titlebook: An Invitation to Algebraic Geometry;  Karen E. Smith,Lauri Kahanp??,William Traves Textbook 2000 Springer Science+Business Media New York 2
影響因子The aim of this book is to describe the underlying principles of algebraic geometry, some of its important developments in the twentieth century, and some of the problems that occupy its practitioners today. It is intended for the working or the aspiring mathematician who is unfamiliar with algebraic geometry but wishes to gain an appreciation of its foundations and its goals with a minimum of prerequisites. Few algebraic prerequisites are presumed beyond a basic course in linear algebra.
Pindex Textbook 2000
The information of publication is updating

書目名稱An Invitation to Algebraic Geometry影響因子(影響力)




書目名稱An Invitation to Algebraic Geometry影響因子(影響力)學科排名




書目名稱An Invitation to Algebraic Geometry網(wǎng)絡公開度




書目名稱An Invitation to Algebraic Geometry網(wǎng)絡公開度學科排名




書目名稱An Invitation to Algebraic Geometry被引頻次




書目名稱An Invitation to Algebraic Geometry被引頻次學科排名




書目名稱An Invitation to Algebraic Geometry年度引用




書目名稱An Invitation to Algebraic Geometry年度引用學科排名




書目名稱An Invitation to Algebraic Geometry讀者反饋




書目名稱An Invitation to Algebraic Geometry讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:27:05 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:00:53 | 只看該作者
Die hormonale Therapie maligner Tumorendents of calculus. The definition generalizes the observation that the tangency of the .-axis to the parabola defined by . = .. can be detected by the fact that the polynomial function . (.) = .. has a “double root” at . = 0.
地板
發(fā)表于 2025-3-22 05:55:00 | 只看該作者
Die endokrine Behandlung des Mammacarcinoms,ace ., we can ask a host of questions whose answers might help illuminate its geometry. What kinds of curves does the surface contain? Is it covered by rational curves, that is, curves birationally equivalent to ?.? If not, how many rational curves does it contain, and how do they intersect each oth
5#
發(fā)表于 2025-3-22 09:47:52 | 只看該作者
6#
發(fā)表于 2025-3-22 13:27:55 | 只看該作者
7#
發(fā)表于 2025-3-22 19:47:33 | 只看該作者
,St?rungen des visuellen Erkennens,compasses both cases. More than just a convenience, the notion of a quasi-projective variety will eventually allow us to think of an algebraic variety as an intrinsically defined geometric object, free from any particular embedding in affine or projective space.
8#
發(fā)表于 2025-3-22 23:07:47 | 只看該作者
Die hormonale Therapie maligner Tumorendents of calculus. The definition generalizes the observation that the tangency of the .-axis to the parabola defined by . = .. can be detected by the fact that the polynomial function . (.) = .. has a “double root” at . = 0.
9#
發(fā)表于 2025-3-23 02:10:32 | 只看該作者
10#
發(fā)表于 2025-3-23 09:00:30 | 只看該作者
Quasi-Projective Varieties,compasses both cases. More than just a convenience, the notion of a quasi-projective variety will eventually allow us to think of an algebraic variety as an intrinsically defined geometric object, free from any particular embedding in affine or projective space.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 13:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
探索| 鄂托克前旗| 湛江市| 克拉玛依市| 读书| 广丰县| 兴安县| 浮山县| 大冶市| 固原市| 故城县| 柘城县| 思南县| 娱乐| 嘉义市| 赤水市| 大邑县| 达州市| 海口市| 屏东县| 房山区| 吴忠市| 新兴县| 鄄城县| 徐州市| 紫阳县| 漯河市| 砚山县| 赤峰市| 云梦县| 梨树县| 定远县| 镇巴县| 霍城县| 界首市| 无锡市| 石狮市| 昭觉县| 剑川县| 合川市| 革吉县|