找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Invitation to Algebraic Geometry; Karen E. Smith,Lauri Kahanp??,William Traves Textbook 2000 Springer Science+Business Media New York 2

[復制鏈接]
樓主: 管玄樂團
11#
發(fā)表于 2025-3-23 11:42:06 | 只看該作者
12#
發(fā)表于 2025-3-23 14:20:39 | 只看該作者
13#
發(fā)表于 2025-3-23 20:46:21 | 只看該作者
Otto K?rner Dr. med., Dr. phil. h. c.Much of the power and rigor of algebraic geometry comes from the fact that geometric questions can be translated into purely algebraic problems.
14#
發(fā)表于 2025-3-23 23:10:42 | 只看該作者
,Die Gruppe der Schlangen (??ιε?),Affine space A. has a natural compactification, the projective space ?., obtained by adding an infinitely distant point in every direction. The goal of this chapter is to introduce projective space and projective varieties and to interpret them as natural compactifications of affine varieties.
15#
發(fā)表于 2025-3-24 03:31:31 | 只看該作者
,St?rungen des visuellen Erkennens,Veronese maps provide an important example of morphisms of quasi-projective varieties. A Veronese map embeds a projective space ?. as a subvariety of some higher-dimensional projective space in a nontrivial way.
16#
發(fā)表于 2025-3-24 06:40:36 | 只看該作者
17#
發(fā)表于 2025-3-24 12:15:45 | 只看該作者
18#
發(fā)表于 2025-3-24 16:18:34 | 只看該作者
Projective Varieties,Affine space A. has a natural compactification, the projective space ?., obtained by adding an infinitely distant point in every direction. The goal of this chapter is to introduce projective space and projective varieties and to interpret them as natural compactifications of affine varieties.
19#
發(fā)表于 2025-3-24 19:39:35 | 只看該作者
Classical Constructions,Veronese maps provide an important example of morphisms of quasi-projective varieties. A Veronese map embeds a projective space ?. as a subvariety of some higher-dimensional projective space in a nontrivial way.
20#
發(fā)表于 2025-3-25 01:42:03 | 只看該作者
Birational Geometry,In 1964, Heisuke Hironaka proved a fundamental theorem: Every quasi-projective variety can be ., or equivalently, every variety is “birationally equivalent” to a smooth projective variety. Before we can state this theorem, we need to introduce some new ideas.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 01:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
丰宁| 兰溪市| 肥东县| 宜春市| 保康县| 西城区| 通化市| 海安县| 普兰店市| 清丰县| 五河县| 余庆县| 巴青县| 和龙市| 鄂托克前旗| 合作市| 遂川县| 萨嘎县| 铁岭县| 华蓥市| 曲阳县| 新郑市| 定日县| 兖州市| 民和| 绥棱县| 米易县| 安溪县| 茌平县| 孝感市| 琼海市| 象州县| 伊宁市| 扎鲁特旗| 淮南市| 隆子县| 泗水县| 屯昌县| 汤阴县| 阜城县| 天津市|