找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem; Luca Capogna,Scott D. Pauls,Donatella Danielli,Jer B

[復(fù)制鏈接]
樓主: Interjection
31#
發(fā)表于 2025-3-27 00:41:14 | 只看該作者
übereinkommen, betreffend die AusweisbücherIn this chapter we review the definitions of Sobolev spaces, BV functions and perimeter of a set relative to the sub-Riemannian structure of ?. These notions are crucial for the development of sub-Riemannian geometric measure theory. Our treatment here is brief, focusing only on those aspects most relevant for the isoperimetric problem.
32#
發(fā)表于 2025-3-27 03:18:38 | 只看該作者
übereinkommen, betreffend die AusweisbücherThe isoperimetric inequality in ? with respect to the horizontal perimeter was first proved by Pansu. We first state it in the setting of . sets.
33#
發(fā)表于 2025-3-27 08:56:24 | 只看該作者
Horizontal Geometry of Submanifolds,This chapter is devoted to the study of the sub-Riemannian geometry of codimension 1 smooth submanifolds of the Heisenberg group.
34#
發(fā)表于 2025-3-27 10:21:44 | 只看該作者
35#
發(fā)表于 2025-3-27 17:28:06 | 只看該作者
,The Isoperimetric Inequality in ?,The isoperimetric inequality in ? with respect to the horizontal perimeter was first proved by Pansu. We first state it in the setting of . sets.
36#
發(fā)表于 2025-3-27 19:40:13 | 只看該作者
37#
發(fā)表于 2025-3-28 01:52:57 | 只看該作者
https://doi.org/10.1007/978-3-7643-8133-2Cauchy-Riemann manifold; Riemannian geometry; Sobolev space; contact geometry; differential geometry; evo
38#
發(fā)表于 2025-3-28 02:10:04 | 只看該作者
39#
發(fā)表于 2025-3-28 07:01:41 | 只看該作者
Luca Capogna,Scott D. Pauls,Donatella Danielli,JerPresents a detailed description of Heisenberg submanifold geometry and geometric measure theory.Collects for the first time the various known partial results and methods of attack on Pansu‘s problem.I
40#
發(fā)表于 2025-3-28 13:07:59 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/a/image/155553.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 04:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新乐市| 湘潭县| 新宁县| 江孜县| 木里| 建平县| 务川| 石楼县| 同心县| 双柏县| 阿拉善右旗| 穆棱市| 石狮市| 乐山市| 偏关县| 德安县| 龙井市| 九龙县| 裕民县| 澄城县| 凉山| 永宁县| 平泉县| 东海县| 临湘市| 长沙县| 镇安县| 酉阳| 东乡族自治县| 内丘县| 芜湖市| 阳东县| 红安县| 鲁山县| 舞钢市| 耒阳市| 广汉市| 海口市| 尖扎县| 喜德县| 富源县|