找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem; Luca Capogna,Scott D. Pauls,Donatella Danielli,Jer B

[復(fù)制鏈接]
查看: 15530|回復(fù): 45
樓主
發(fā)表于 2025-3-21 16:24:01 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem
影響因子2023Luca Capogna,Scott D. Pauls,Donatella Danielli,Jer
視頻videohttp://file.papertrans.cn/156/155553/155553.mp4
發(fā)行地址Presents a detailed description of Heisenberg submanifold geometry and geometric measure theory.Collects for the first time the various known partial results and methods of attack on Pansu‘s problem.I
學(xué)科分類Progress in Mathematics
圖書封面Titlebook: An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem;  Luca Capogna,Scott D. Pauls,Donatella Danielli,Jer B
影響因子.The past decade has witnessed a dramatic and widespread expansion of interest and activity in sub-Riemannian (Carnot-Caratheodory) geometry, motivated both internally by its role as a basic model in the modern theory of analysis on metric spaces, and externally through the continuous development of applications (both classical and emerging) in areas such as control theory, robotic path planning, neurobiology and digital image reconstruction. The quintessential example of a sub Riemannian structure is the Heisenberg group, which is a nexus for all of the aforementioned applications as well as a point of contact between CR geometry, Gromov hyperbolic geometry of complex hyperbolic space, subelliptic PDE, jet spaces, and quantum mechanics. This book provides an introduction to the basics of sub-Riemannian differential geometry and geometric analysis in the Heisenberg group, focusing primarily on the current state of knowledge regarding Pierre Pansu‘s celebrated 1982 conjecture regarding the sub-Riemannian isoperimetric profile. It presents a detailed description of Heisenberg submanifold geometry and geometric measure theory, which provides an opportunity to collect for the first tim
Pindex Book 2007Latest edition
The information of publication is updating

書目名稱An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem影響因子(影響力)




書目名稱An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem影響因子(影響力)學(xué)科排名




書目名稱An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem網(wǎng)絡(luò)公開度




書目名稱An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem被引頻次




書目名稱An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem被引頻次學(xué)科排名




書目名稱An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem年度引用




書目名稱An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem年度引用學(xué)科排名




書目名稱An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem讀者反饋




書目名稱An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:33:16 | 只看該作者
Book 2007Latest editionily on the current state of knowledge regarding Pierre Pansu‘s celebrated 1982 conjecture regarding the sub-Riemannian isoperimetric profile. It presents a detailed description of Heisenberg submanifold geometry and geometric measure theory, which provides an opportunity to collect for the first tim
板凳
發(fā)表于 2025-3-22 03:33:05 | 只看該作者
An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem
地板
發(fā)表于 2025-3-22 07:52:48 | 只看該作者
The Isoperimetric Problem in Euclidean Space,rgil’s saga lies one of the earliest problems in extremal geometric analysis. For the bargain which Dido agrees to with a local potentate is this: she may have that portion of land which she is able to enclose with the hide of a bull. Legend records Dido’s ingenious and elegant solution: cutting the
5#
發(fā)表于 2025-3-22 11:40:48 | 只看該作者
6#
發(fā)表于 2025-3-22 13:10:52 | 只看該作者
7#
發(fā)表于 2025-3-22 19:05:52 | 只看該作者
8#
發(fā)表于 2025-3-23 00:15:03 | 只看該作者
9#
發(fā)表于 2025-3-23 01:27:46 | 只看該作者
10#
發(fā)表于 2025-3-23 07:11:51 | 只看該作者
https://doi.org/10.1007/978-3-662-26298-6is a variant of what has become known as the classical ... In more precise terms it may be formulated as follows: .. Needless to say, Dido’s solution is correct: the extremal regions are precisely open circular planar discs.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 04:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吴旗县| 和静县| 红安县| 陆河县| 兴国县| 揭东县| 仙游县| 双流县| 藁城市| 武定县| 江川县| 云霄县| 西城区| 乌拉特中旗| 乃东县| 临江市| 嵊泗县| 星子县| 安宁市| 兰州市| 扶绥县| 桃园县| 施秉县| 马龙县| 田阳县| 阿坝县| 新蔡县| 齐齐哈尔市| 乐业县| 盐边县| 深州市| 武城县| 玉田县| 江口县| 永胜县| 乌兰浩特市| 珠海市| 镶黄旗| 襄城县| 哈密市| 长沙市|