找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Ultrametric Summability Theory; P.N. Natarajan Book 2015Latest edition The Editor(s) (if applicable) and The Author(s),

[復(fù)制鏈接]
樓主: Opulent
21#
發(fā)表于 2025-3-25 03:47:54 | 只看該作者
22#
發(fā)表于 2025-3-25 10:52:05 | 只看該作者
The Euler and The Taylor Methods,In this chapter, we introduce the Euler and the Taylor methods and present a detailed study of their properties.
23#
發(fā)表于 2025-3-25 14:02:10 | 只看該作者
Tauberian Theorems,In this chapter, we prove Tauberian theorems for the N?rlund, the Weighted Mean and the Euler methods.
24#
發(fā)表于 2025-3-25 17:27:47 | 只看該作者
Silverman-Toeplitz Theorem for Double Sequences and Double Series,In the present chapter, we introduce double sequences and double series in ultrametric analysis. We prove Silverman-Toeplitz theorem for 4-dimensional infinite matrices. We also prove Schur’s and Steinhaus theorems for 4-dimensional matrices.
25#
發(fā)表于 2025-3-25 21:35:49 | 只看該作者
,The N?rlund Method and The Weighted Mean Method for Double Sequences,In the current chapter, we introduce the N?rlund method and the Weighted Mean method for double sequences and establish many of their properties.
26#
發(fā)表于 2025-3-26 00:18:20 | 只看該作者
27#
發(fā)表于 2025-3-26 04:32:05 | 只看該作者
Forum for Interdisciplinary Mathematicshttp://image.papertrans.cn/a/image/155522.jpg
28#
發(fā)表于 2025-3-26 10:13:52 | 只看該作者
29#
發(fā)表于 2025-3-26 16:23:51 | 只看該作者
30#
發(fā)表于 2025-3-26 20:52:58 | 只看該作者
https://doi.org/10.1007/b138607troduced and Ingleton’s version of the Hahn–Banach theorem is proved. The classical “convexity” does not work in the ultrametric set up and it is replaced by the notion of “.-convexity”, which is briefly discussed at the end of the chapter.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
旅游| 台北市| 玛多县| 芜湖县| 保康县| 瑞丽市| 芷江| 灵山县| 嘉善县| 射阳县| 黄骅市| 民乐县| 五华县| 安吉县| 甘德县| 通化市| 清河县| 会东县| 平乡县| 漳浦县| 延安市| 梨树县| 新野县| 左贡县| 梅河口市| 张掖市| 肃宁县| 无棣县| 盐津县| 清水县| 双江| 新昌县| 惠水县| 雷州市| 搜索| 安吉县| 威远县| 郑州市| 台前县| 普兰县| 泰宁县|