找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Ultrametric Summability Theory; P.N. Natarajan Book 2015Latest edition The Editor(s) (if applicable) and The Author(s),

[復(fù)制鏈接]
查看: 7708|回復(fù): 43
樓主
發(fā)表于 2025-3-21 16:32:01 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱An Introduction to Ultrametric Summability Theory
影響因子2023P.N. Natarajan
視頻videohttp://file.papertrans.cn/156/155522/155522.mp4
發(fā)行地址Introduces the concepts of ultrametric summability theory—a fusion of summability theory and ultrametric analysis.Broadens understanding of ultrametric analysis, an emerging branch of mathematics.Pres
學(xué)科分類Forum for Interdisciplinary Mathematics
圖書封面Titlebook: An Introduction to Ultrametric Summability Theory;  P.N. Natarajan Book 2015Latest edition The Editor(s) (if applicable) and The Author(s),
影響因子This is the second, completely revised and expanded edition of the author’s first book, covering numerous new topics and recent developments in ultrametric summability theory. Ultrametric analysis has emerged as an important branch of mathematics in recent years. This book presents a brief survey of the research to date in ultrametric summability theory, which is a fusion of a classical branch of mathematics (summability theory) with a modern branch of analysis (ultrametric analysis). Several mathematicians have contributed to summability theory as well as functional analysis. The book will appeal to both young researchers and more experienced mathematicians who are looking to explore new areas in analysis. The book is also useful as a text for those who wish to specialize in ultrametric summability theory.
Pindex Book 2015Latest edition
The information of publication is updating

書目名稱An Introduction to Ultrametric Summability Theory影響因子(影響力)




書目名稱An Introduction to Ultrametric Summability Theory影響因子(影響力)學(xué)科排名




書目名稱An Introduction to Ultrametric Summability Theory網(wǎng)絡(luò)公開度




書目名稱An Introduction to Ultrametric Summability Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱An Introduction to Ultrametric Summability Theory被引頻次




書目名稱An Introduction to Ultrametric Summability Theory被引頻次學(xué)科排名




書目名稱An Introduction to Ultrametric Summability Theory年度引用




書目名稱An Introduction to Ultrametric Summability Theory年度引用學(xué)科排名




書目名稱An Introduction to Ultrametric Summability Theory讀者反饋




書目名稱An Introduction to Ultrametric Summability Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:38:01 | 只看該作者
Ultrametric Functional Analysis,ic set up?too. However, the Hahn–Banach theorem fails to hold. To salvage the Hahn–Banach theorem, the concept of a “spherically complete field” is introduced and Ingleton’s version of the Hahn–Banach theorem is proved. The classical “convexity” does not work in the ultrametric set up and it is repl
板凳
發(fā)表于 2025-3-22 03:43:51 | 只看該作者
地板
發(fā)表于 2025-3-22 05:06:33 | 只看該作者
5#
發(fā)表于 2025-3-22 10:56:17 | 只看該作者
Ultrametric Summability Theory,n the topic) to the present. In the present chapter, Silverman–Toeplitz theorem is proved using the “sliding-hump method”. Schur’s theorem and Steinhaus theorem also find a mention. Core of a sequence and Knopp’s core theorem is discussed. It is proved that certain Steinhaus-type theorems fail to hold.
6#
發(fā)表于 2025-3-22 12:53:02 | 只看該作者
7#
發(fā)表于 2025-3-22 20:41:45 | 只看該作者
8#
發(fā)表于 2025-3-22 22:43:12 | 只看該作者
9#
發(fā)表于 2025-3-23 02:53:49 | 只看該作者
https://doi.org/10.1007/978-81-322-2559-1Archimedean axiom; Canonical expansion; Double sequences; Hahn-Banach theorem; Schur‘s theorem; The N?rlu
10#
發(fā)表于 2025-3-23 09:07:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 00:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台南市| 双桥区| 贵德县| 金沙县| 武鸣县| 衡山县| 泾阳县| 尖扎县| 大余县| 林周县| 蒲城县| 沅江市| 特克斯县| 玉田县| 沂源县| 孟连| 平顶山市| 皮山县| 三河市| 井研县| 兴国县| 永年县| 杭锦后旗| 德格县| 东乌珠穆沁旗| 赤峰市| 漳平市| 筠连县| 万载县| 黑水县| 巴马| 新闻| 苏尼特右旗| 岱山县| 绩溪县| 许昌市| 漠河县| 梅河口市| 黑龙江省| 黄山市| 浦城县|