找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Machine Learning; Miroslav Kubat Textbook 20151st edition Springer International Publishing Switzerland 2015 Applicatio

[復制鏈接]
樓主: Awkward
41#
發(fā)表于 2025-3-28 17:23:04 | 只看該作者
The Genetic Algorithm, the training examples, but also future examples. Chapter?1 explained the principle of one of the most popular AI-based search techniques, the so-called ., and showed how it can be used in classifier induction.
42#
發(fā)表于 2025-3-28 20:54:19 | 只看該作者
Reinforcement Learning,echniques that have been developed with this in mind. In ., though, the task is different. Instead of induction from a set of pre-classified examples, the agent “experiments” with a system, and the system responds to this experimentation with rewards or punishments. The agent then optimizes its beha
43#
發(fā)表于 2025-3-29 00:13:52 | 只看該作者
Textbook 20151st editionnear and polynomial classifiers, decision trees, neural networks, and support vector machines. Later chapters show how to combine these simple tools by way of “boosting,” how to exploit them in more complicated domains, and how to deal with diverse advanced practical issues. One chapter is dedicated to the popular genetic algorithms..
44#
發(fā)表于 2025-3-29 06:04:16 | 只看該作者
45#
發(fā)表于 2025-3-29 09:56:48 | 只看該作者
46#
發(fā)表于 2025-3-29 15:23:45 | 只看該作者
https://doi.org/10.1007/978-3-662-26042-5ities and similarities employed by the earlier paradigms, we can try to identify the . that separates the two classes. A very simple possibility is to use to this end a linear function. More flexible are high-order polynomials which are capable of defining very complicated inter-class boundaries. These, however, have to be handled with care.
47#
發(fā)表于 2025-3-29 17:50:26 | 只看該作者
48#
發(fā)表于 2025-3-29 23:45:39 | 只看該作者
https://doi.org/10.1007/978-3-662-26042-5 simple. Error rate rarely paints the whole picture, and there are situations in which it can even be misleading. This is why the conscientious engineer wants to be acquainted with other criteria to assess the classifiers’ performance. This knowledge will enable her to choose the one that is best in capturing the behavioral aspects of interest.
49#
發(fā)表于 2025-3-30 02:31:39 | 只看該作者
50#
發(fā)表于 2025-3-30 07:19:51 | 只看該作者
Die Umweltvertr?glichkeitsprüfung the agent “experiments” with a system, and the system responds to this experimentation with rewards or punishments. The agent then optimizes its behavior, its goal being to maximize the rewards and to minimize the punishments.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 13:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宝丰县| 搜索| 尉犁县| 当阳市| 宝应县| 通道| 仁布县| 繁昌县| 凤阳县| 类乌齐县| 军事| 徐州市| 灌南县| 栖霞市| 封开县| 雅安市| 南澳县| 武宣县| 浠水县| 齐齐哈尔市| 淮阳县| 社旗县| 仙桃市| 保德县| 达日县| 比如县| 湘潭县| 巢湖市| 曲沃县| 兰考县| 普定县| 桓台县| 保山市| 阿瓦提县| 齐齐哈尔市| 大渡口区| 丽江市| 皋兰县| 灌云县| 公主岭市| 揭阳市|