找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Machine Learning; Miroslav Kubat Textbook 20151st edition Springer International Publishing Switzerland 2015 Applicatio

[復(fù)制鏈接]
查看: 27679|回復(fù): 51
樓主
發(fā)表于 2025-3-21 19:35:09 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱An Introduction to Machine Learning
影響因子2023Miroslav Kubat
視頻videohttp://file.papertrans.cn/156/155324/155324.mp4
發(fā)行地址Supplies frequent opportunities to practice techniques at the end of each chapter with control questions, exercises, thought experiments, and computer assignments.Reinforces principles using well-sele
圖書封面Titlebook: An Introduction to Machine Learning;  Miroslav Kubat Textbook 20151st edition Springer International Publishing Switzerland 2015 Applicatio
影響因子.This book presents basic ideas of machine learning in a way that is easy to understand, by providing hands-on practical advice, using simple examples, and motivating students with discussions of interesting applications. The main topics include Bayesian classifiers, nearest-neighbor classifiers, linear and polynomial classifiers, decision trees, neural networks, and support vector machines. Later chapters show how to combine these simple tools by way of “boosting,” how to exploit them in more complicated domains, and how to deal with diverse advanced practical issues. One chapter is dedicated to the popular genetic algorithms..
Pindex Textbook 20151st edition
The information of publication is updating

書目名稱An Introduction to Machine Learning影響因子(影響力)




書目名稱An Introduction to Machine Learning影響因子(影響力)學科排名




書目名稱An Introduction to Machine Learning網(wǎng)絡(luò)公開度




書目名稱An Introduction to Machine Learning網(wǎng)絡(luò)公開度學科排名




書目名稱An Introduction to Machine Learning被引頻次




書目名稱An Introduction to Machine Learning被引頻次學科排名




書目名稱An Introduction to Machine Learning年度引用




書目名稱An Introduction to Machine Learning年度引用學科排名




書目名稱An Introduction to Machine Learning讀者反饋




書目名稱An Introduction to Machine Learning讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:56:23 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:38:55 | 只看該作者
https://doi.org/10.1007/978-3-662-26042-5uffer from the same disease. In short, similar objects often belong to the same class—an observation that forms the basis of a popular approach to classification: when asked to determine the class of object ., find the training example most similar to it. Then label . with this example’s class.
地板
發(fā)表于 2025-3-22 05:01:28 | 只看該作者
5#
發(fā)表于 2025-3-22 10:53:01 | 只看該作者
https://doi.org/10.1007/978-3-662-26042-5at it takes to induce a useful classifier from data, and, conversely, why the outcome of a machine-learning undertaking so often disappoints. And so, even though this textbook does not want to be mathematical, it cannot help introducing at least the basic concepts of the ..
6#
發(fā)表于 2025-3-22 14:16:05 | 只看該作者
7#
發(fā)表于 2025-3-22 17:46:09 | 只看該作者
https://doi.org/10.1007/978-3-663-02254-1 the training examples, but also future examples. Chapter?1 explained the principle of one of the most popular AI-based search techniques, the so-called ., and showed how it can be used in classifier induction.
8#
發(fā)表于 2025-3-22 23:09:05 | 只看該作者
9#
發(fā)表于 2025-3-23 03:13:32 | 只看該作者
10#
發(fā)表于 2025-3-23 06:39:31 | 只看該作者
Computational Learning Theory,at it takes to induce a useful classifier from data, and, conversely, why the outcome of a machine-learning undertaking so often disappoints. And so, even though this textbook does not want to be mathematical, it cannot help introducing at least the basic concepts of the ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-3 04:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和硕县| 陕西省| 商洛市| 万荣县| 迭部县| 丰都县| 治县。| 遵化市| 康平县| 固安县| 赞皇县| 马公市| 横山县| 九寨沟县| 青岛市| 沙洋县| 滨海县| 怀安县| 镇沅| 隆昌县| 新安县| 清苑县| 剑阁县| 共和县| 余江县| 屏东市| 黄山市| 景谷| 临朐县| 志丹县| 绥芬河市| 习水县| 沽源县| 黔东| 长岭县| 通山县| 盐源县| 三门峡市| 双峰县| 宁波市| 云南省|